Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054201    DOI: 10.1088/1674-1056/24/5/054201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Realizing high photovoltaic efficiency with parallel multijunction solar cells based on spectrum-splitting and -concentrating diffractive optical element

Wang Jin-Ze (王进泽)a b c, Huang Qing-Li (黄庆礼)a b c, Xu Xin (许信)a b c, Quan Bao-Gang (全宝钢)a d, Luo Jian-Heng (罗建恒)a b c, Zhang Yan (张岩)e, Ye Jia-Sheng (叶佳声)e, Li Dong-Mei (李冬梅)a b c, Meng Qing-Bo (孟庆波)a b c, Yang Guo-Zhen (杨国桢)a f
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
d Laboratory of Microfabrication, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
e Beijing Key Laboratory for THz Spectroscopy and Imaging, Key Laboratory of THz Optoelectronics, Ministry of Education, Beijing 100048, China;
f Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar cells was obtained based on Shockley–Queisser's theory. An efficiency exceeding the Shockley–Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells.

Keywords:  diffractive optical element      split      concentration      multijunction  
Received:  21 November 2014      Revised:  28 December 2014      Accepted manuscript online: 
PACS:  42.15.Eq (Optical system design)  
  42.79.Ek (Solar collectors and concentrators)  
  88.40.H- (Solar cells (photovoltaics))  
  42.25.Fx (Diffraction and scattering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 91233202, 21173260, and 51072221) and the National Basic Research Program of China (Grant No. 2012CB932903).

Corresponding Authors:  Meng Qing-Bo, Yang Guo-Zhen     E-mail:  qbmeng@iphy.ac.cn;yanggz@iphy.ac.cn
About author:  42.15.Eq; 42.79.Ek; 88.40.H-; 42.25.Fx

Cite this article: 

Wang Jin-Ze (王进泽), Huang Qing-Li (黄庆礼), Xu Xin (许信), Quan Bao-Gang (全宝钢), Luo Jian-Heng (罗建恒), Zhang Yan (张岩), Ye Jia-Sheng (叶佳声), Li Dong-Mei (李冬梅), Meng Qing-Bo (孟庆波), Yang Guo-Zhen (杨国桢) Realizing high photovoltaic efficiency with parallel multijunction solar cells based on spectrum-splitting and -concentrating diffractive optical element 2015 Chin. Phys. B 24 054201

[1] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2013 Prog. Photovolt: Res. Appl. 21 827
[2] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[3] Honsberg C and Barnett A 2005 20th European Photovoltaics Solar Energy Conference, Barcelona
[4] Dimroth F and Kurtz S 2007 MRS Bull. 32 230
[5] Green M A and Ho-Baillie A 2010 Prog. Photovolt. Res. Appl. 18 42
[6] King R, Sherif R, Kinsey G, Kurtz S, Fetzer C, Edmondson K, Law D, Cotal H, Krut D, Ermer J and Karam N H 2005 International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen 30 40
[7] Polman A and Atwater H A 2012 Nat. Mater. 11 174
[8] Tanabe K 2009 Energies 2 504
[9] Luque A 2011 J. Appl. Phys. 110 031301
[10] Dupuis R D 2000 IEEE J. Sel. Top. Quantum Electron. 6 1040
[11] Shimizu Y and Okada Y 2004 J. Cryst. Growth 265 99
[12] Mitchell B, Peharz G, Siefer G, Peters M, Gandy T, Goldschmidt J C, Benick J, Glunz S W, Bett A W and Dimroth F 2010 Prog. Photovolt: Res. Appl. 19 61
[13] Peters M, Goldschmidt J C, Löper P, Groβ B, Üpping J, Dimroth F, Wehrspohn R B and Bläsi B 2010 Energies 3 171
[14] Barnett A, Kirkpatrick D, Honsberg C, Moore D, Wanlass M, Emery K, Schwartz R, Carlson D, Bowden S and Aiken D 2008 Prog. Photovolt: Res. Appl. 17 75
[15] Gokcen N A and Loferski J J 1979 Solar Energy Materials 1 271
[16] Imenes A G and Mills D R 2004 Sol. Energy Mater. Sol. Cells 84 19
[17] Ludman J E, Riccobono J, Semenova I V, Reinhand N O, Tai W, Li X, Syphers G, Rallis E, Sliker G and Martín J 1997 Solar Energy 60 1
[18] Bloss W H, Griesinger M and Reinhardt E R 1982 Appl. Opt. 21 3739
[19] Ludman J E 1982 Am. J. Phys. 50 244
[20] Stefancich M, Zayan A, Chiesa M, Rampino S, Roncati D, Kimerling L and Michel J 2012 Opt. Express 20 9004
[21] Michel C, Loicq J, Languy F, Mazzoli A and Habraken S 2013 9th International Conference on Concentrator Photovoltaic Systems (Cpv-9) 1556 97
[22] Huang Q, Wang J, Quan B, Zhang Q, Zhang D, Li D, Meng Q, Pan L, Wang Y and Yang G 2013 Appl. Opt. 52 2312
[23] Ye J S, Wang J Z, Huang Q L, Dong B Z, Zhang Y and Yang G Z 2013 Chin. Phys. B 22 34201
[24] Liu R, Gu B Y, Dong B Z and Yang G Z 1998 J. Opt. Soc. Am. A 15 689
[25] Gerchberg R W and Saxton O 1972 Optik 35 237
[26] Gale M T, Rossi M, Schutz H, Ehbets P, Herzig H P and Prongue D 1993 Appl. Opt. 32 2526
[27] Gale M T 1997 Microelectron. Eng. 34 321
[28] Gu B Y, Yang G Z, Dong B Z, Chang M P and Ersoy O K 1995 Appl. Opt. 34 2564
[29] Herbjonrod A, Schjoberg-Henriksen K, Angelskår H and Lacolle M 2009 Journal of Micromechanics and Microengineering 19 125022
[30] Wyrowski F 1990 J. Opt. Soc. Am. A 7 961
[31] Malitson I H 1965 J. Opt. Soc. Am. 55 1205
[32] Supplementary Information
[33] Wang J Z, Ye J S, Huang Q L, Xu X, Li D M, Meng Q B and Yan G Z 2014 Chin. Phys. B 23 044211
[34] Gu B, Yang G and Dong B 1986 Appl. Opt. 25 3197
[35] Commission I E 2008 International Standard, IEC 60904-3, Edition 2,2008,ISBN 2-8318-9705-X
[36] Bremner S P, Levy M Y and Honsberg C B 2008 Prog. Photovolt. Res. Appl. 16 225
[37] Henry C H 1980 J. Appl. Phys. 51 4494
[38] Martí A and Araújo G L 1996 Sol. Energy Mater. Sol. Cells 43 203
[39] Kurtz S, Myers D, McMahon W E, Geisz J and Steiner M 2008 Prog. Photovolt. Res. Appl. 16 537
[41] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2012 Prog. Photovolt. Res. Appl. 20 12
[42] Leite M S, Woo R L, Hong W D, Law D C and Atwater H A 2011 Appl. Phys. Lett. 98 093502
[43] Jin P, Liu N, Liu T T and Tan J B 2010 Microelectron. Eng. 87 1086
[44] Kim S M, Kim D M, Kang S and Ahn S 2003 Micromachining Technology for Micro-Optics and Nano-Optics 63
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[4] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[5] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[6] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[7] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[8] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[9] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[10] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[11] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[12] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[13] Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
Jian Zeng(曾健) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(4): 043202.
[14] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!