Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 114301    DOI: 10.1088/1674-1056/22/11/114301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Acoustic beam splitting in a sonic crystal around a directional band gap

Ahmet Ciceka, Olgun Adem Kayab, Bulent Ulugc
a Department of Physics, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Campus 15100, Burdur/Turkey;
b Department of Computer Education and Educational Technology, Faculty of Education, Inonu University 44280, Malatya/Turkey;
c Department of Physics, Faculty of Science, Akdeniz University, Campus 07058, Antalya/Turkey
Abstract  Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle.
Keywords:  sonic crystal      directional band gap      source size      beam splitting  
Received:  12 March 2013      Revised:  01 April 2013      Accepted manuscript online: 
PACS:  43.20.El (Reflection, refraction, diffraction of acoustic waves)  
  43.40.Fz (Acoustic scattering by elastic structures)  
  43.58.Fm (Sound level meters, level recorders, sound pressure, particle velocity, And sound intensity measurements, meters, and controllers)  
Fund: Project supported by Akdeniz University Scientific Research Projects Coordination Unit.
Corresponding Authors:  Ahmet Cicek     E-mail:  ahmetcicek@mehmetakif.edu.tr

Cite this article: 

Ahmet Cicek, Olgun Adem Kaya, Bulent Ulug Acoustic beam splitting in a sonic crystal around a directional band gap 2013 Chin. Phys. B 22 114301

[1] Sanchis L, Håkansson A, Cervera F and Sánchez-Dehesa J 2003 Phys. Rev. B 67 035422
[2] Håkansson A, Sánchez-Dehesa J and Cervera F 2006 Appl. Phys. Lett. 88 163506
[3] Pennec Y, Djafari-Rouhani B, Vasseur J O, Khelif A and Deymier P A 2004 Phys. Rev. E 69 046608
[4] Vasseur J O, Bou M O, Robillard J F, Hladky-Hennion A C and Deymier P A 2011 AIP Adv. 1 041904
[5] Li X and Liu Z 2005 Phys. Lett. A 338 413
[6] Wu F G, Liu Z Y and Liu Y Y 2004 Phys. Rev. E 69 066609
[7] Yao Z J, Yu G L, Wang Y S and Shi Z F 2009 Int. J. Solids Struct. 46 2571
[8] Wu L Y and Chen L W 2007 J. Phys. D: Appl. Phys. 40 7579
[9] Wen J, Yu D, Cai L and Wen X 2009 J. Phys. D: Appl. Phys. 42 115417
[10] Ma P S, Kim H W, Oh J H and Kim Y Y 2011 Appl. Phys. Lett. 99 201906
[11] Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N and Ming N B 2007 Nat. Mater. 6 744
[12] Bucay J, Roussel E, Vasseur J O, Deymier P A, Hladky-Hennion A C, Pennec Y, Muralidharan K, Djafari-Rouhani B and Dubus B 2009 Phys. Rev. B 79 214305
[13] Bringuier S, Swinteck N, Vasseur J O, Robillard J F, Runge K, Muralidharan K and Deymier P A 2011 J. Acoust. Soc. Am. 130 1919
[14] Swinteck N, Robillard J F, Bringuier S, Bucay J, Muralidharan K, Vasseur J O, Runge K and Deymier P A 2011 Appl. Phys. Lett. 98 103508
[15] Swinteck N, Bringuier S, Robillard J F, Vasseur J O, Hladky-Hennion A C, Runge K and Deymier P A 2011 J. Appl. Phys. 110 074507
[16] Espinosa V, Sánchez-Morcillo V J, Staliunas K, Pérez-Arjona I and Redondo J 2007 Phys. Rev. B 76 140302
[17] Pérez-Arjona I, Sánchez-Morcillo V J, Redondo J, Espinosa V and Staliunas K 2007 Phys. Rev. B 75 014304
[18] Soliveres E, Espinosa V, Pérez-Arjona I, Sánchez-Morcillo V J and Staliunas K 2009 Appl. Phys. Lett. 94 164101
[19] Chiang C Y and Luan P G 2010 J. Phys.: Condens. Matter 22 055405
[20] Sánchez-Morcillo V J, Staliunas K, Espinosa V, Pérez-Arjona I, Redondo J and Soliveres E 2009 Phys. Rev. B 80 134303
[21] Picó R, Sánchez-Morcillo V J, Pérez-Arjona I and Staliunas K 2012 Appl. Acoust. 73 302
[22] Li X F, Ni X, Feng L, Lu M H, He C and Chen Y F 2011 Phys. Rev. Lett. 106 084301
[23] Cicek A, Kaya O A and Ulug B 2012 Appl. Phys. Lett. 100 111905
[24] Feng L, Liu X P, Chen Y B, Huang Z P, Mao Y W, Chen Y F, Zi J and Zhu Y Y 2005 Phys. Rev. B 72 033108
[25] Feng L, Liu X P, Lu M H, Chen Y B, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N and Ming N B 2006 Phys. Rev. Lett. 96 014301
[26] Berenger J P 1994 J. Comput. Phys. 114 185
[1] Negative refractions by triangular lattice sonic crystals in partial band gaps
S. Alagoz, B. B. Alagoz, A. Sahin, S. Nur. Chin. Phys. B, 2015, 24(4): 046201.
[2] Homogenization theory for designing graded viscoelastic sonic crystals
Qu Zhao-Liang (曲兆亮), Ren Chun-Yu (任春雨), Pei Yong-Mao (裴永茂), Fang Dai-Ning (方岱宁). Chin. Phys. B, 2015, 24(2): 024303.
[3] Theoretical demonstration of hybrid focusing points ofsonic crystal flat lenses and possible applications
Serkan Alagoz, Baris Baykant Alagoz. Chin. Phys. B, 2013, 22(7): 076201.
[4] Effects of wave propagation anisotropy on the wave focusing by negative refractive sonic crystal flat lenses
S. Alagoz. Chin. Phys. B, 2012, 21(12): 126202.
No Suggested Reading articles found!