ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Acoustic beam splitting in a sonic crystal around a directional band gap |
Ahmet Ciceka, Olgun Adem Kayab, Bulent Ulugc |
a Department of Physics, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Campus 15100, Burdur/Turkey; b Department of Computer Education and Educational Technology, Faculty of Education, Inonu University 44280, Malatya/Turkey; c Department of Physics, Faculty of Science, Akdeniz University, Campus 07058, Antalya/Turkey |
|
|
Abstract Beam splitting upon refraction in a triangular sonic crystal composed of aluminum cylinders in air is experimentally and numerically demonstrated to occur due to finite source size, which facilitates circumvention of a directional band gap. Experiments reveal that two distinct beams emerge at crystal output, in agreement with the numerical results obtained through the finite-element method. Beam splitting occurs at sufficiently-small source sizes comparable to lattice periodicity determined by the spatial gap width in reciprocal space. Split beams propagate in equal amplitude, whereas beam splitting is destructed for oblique incidence above a critical incidence angle.
|
Received: 12 March 2013
Revised: 01 April 2013
Accepted manuscript online:
|
PACS:
|
43.20.El
|
(Reflection, refraction, diffraction of acoustic waves)
|
|
43.40.Fz
|
(Acoustic scattering by elastic structures)
|
|
43.58.Fm
|
(Sound level meters, level recorders, sound pressure, particle velocity, And sound intensity measurements, meters, and controllers)
|
|
Fund: Project supported by Akdeniz University Scientific Research Projects Coordination Unit. |
Corresponding Authors:
Ahmet Cicek
E-mail: ahmetcicek@mehmetakif.edu.tr
|
Cite this article:
Ahmet Cicek, Olgun Adem Kaya, Bulent Ulug Acoustic beam splitting in a sonic crystal around a directional band gap 2013 Chin. Phys. B 22 114301
|
[1] |
Sanchis L, Håkansson A, Cervera F and Sánchez-Dehesa J 2003 Phys. Rev. B 67 035422
|
[2] |
Håkansson A, Sánchez-Dehesa J and Cervera F 2006 Appl. Phys. Lett. 88 163506
|
[3] |
Pennec Y, Djafari-Rouhani B, Vasseur J O, Khelif A and Deymier P A 2004 Phys. Rev. E 69 046608
|
[4] |
Vasseur J O, Bou M O, Robillard J F, Hladky-Hennion A C and Deymier P A 2011 AIP Adv. 1 041904
|
[5] |
Li X and Liu Z 2005 Phys. Lett. A 338 413
|
[6] |
Wu F G, Liu Z Y and Liu Y Y 2004 Phys. Rev. E 69 066609
|
[7] |
Yao Z J, Yu G L, Wang Y S and Shi Z F 2009 Int. J. Solids Struct. 46 2571
|
[8] |
Wu L Y and Chen L W 2007 J. Phys. D: Appl. Phys. 40 7579
|
[9] |
Wen J, Yu D, Cai L and Wen X 2009 J. Phys. D: Appl. Phys. 42 115417
|
[10] |
Ma P S, Kim H W, Oh J H and Kim Y Y 2011 Appl. Phys. Lett. 99 201906
|
[11] |
Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N and Ming N B 2007 Nat. Mater. 6 744
|
[12] |
Bucay J, Roussel E, Vasseur J O, Deymier P A, Hladky-Hennion A C, Pennec Y, Muralidharan K, Djafari-Rouhani B and Dubus B 2009 Phys. Rev. B 79 214305
|
[13] |
Bringuier S, Swinteck N, Vasseur J O, Robillard J F, Runge K, Muralidharan K and Deymier P A 2011 J. Acoust. Soc. Am. 130 1919
|
[14] |
Swinteck N, Robillard J F, Bringuier S, Bucay J, Muralidharan K, Vasseur J O, Runge K and Deymier P A 2011 Appl. Phys. Lett. 98 103508
|
[15] |
Swinteck N, Bringuier S, Robillard J F, Vasseur J O, Hladky-Hennion A C, Runge K and Deymier P A 2011 J. Appl. Phys. 110 074507
|
[16] |
Espinosa V, Sánchez-Morcillo V J, Staliunas K, Pérez-Arjona I and Redondo J 2007 Phys. Rev. B 76 140302
|
[17] |
Pérez-Arjona I, Sánchez-Morcillo V J, Redondo J, Espinosa V and Staliunas K 2007 Phys. Rev. B 75 014304
|
[18] |
Soliveres E, Espinosa V, Pérez-Arjona I, Sánchez-Morcillo V J and Staliunas K 2009 Appl. Phys. Lett. 94 164101
|
[19] |
Chiang C Y and Luan P G 2010 J. Phys.: Condens. Matter 22 055405
|
[20] |
Sánchez-Morcillo V J, Staliunas K, Espinosa V, Pérez-Arjona I, Redondo J and Soliveres E 2009 Phys. Rev. B 80 134303
|
[21] |
Picó R, Sánchez-Morcillo V J, Pérez-Arjona I and Staliunas K 2012 Appl. Acoust. 73 302
|
[22] |
Li X F, Ni X, Feng L, Lu M H, He C and Chen Y F 2011 Phys. Rev. Lett. 106 084301
|
[23] |
Cicek A, Kaya O A and Ulug B 2012 Appl. Phys. Lett. 100 111905
|
[24] |
Feng L, Liu X P, Chen Y B, Huang Z P, Mao Y W, Chen Y F, Zi J and Zhu Y Y 2005 Phys. Rev. B 72 033108
|
[25] |
Feng L, Liu X P, Lu M H, Chen Y B, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N and Ming N B 2006 Phys. Rev. Lett. 96 014301
|
[26] |
Berenger J P 1994 J. Comput. Phys. 114 185
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|