|
|
New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries |
Mu Lin-Qin (穆林沁), Hu Yong-Sheng (胡勇胜), Chen Li-Quan (陈立泉) |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract In order to achieve better Na storage performance, most layered oxide positive electrode materials contain toxic and expensive transition metals Ni and/or Co, which are also widely used for lithium-ion batteries. Here we report a new quaternary layered oxide consisting of Cu, Fe, Mn, and Ti transition metals with O3-type oxygen stacking as a positive electrode for room-temperature sodium-ion batteries. The material can be simply prepared by a high-temperature solidstate reaction route and delivers a reversible capacity of 94 mAh/g with an average storage voltage of 3.2 V. This paves the way for cheaper and non-toxic batteries with high Na storage performance.
|
Received: 26 December 2014
Revised: 30 January 2015
Accepted manuscript online:
|
PACS:
|
82.45.Yz
|
(Nanostructured materials in electrochemistry)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.47.Cb
|
(Lead-acid, nickel-metal hydride and other batteries)
|
|
84.60.&ndash
|
|
|
h
|
|
|
Corresponding Authors:
Hu Yong-Sheng
E-mail: yshu@aphy.iphy.ac.cn
|
Cite this article:
Mu Lin-Qin (穆林沁), Hu Yong-Sheng (胡勇胜), Chen Li-Quan (陈立泉) New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries 2015 Chin. Phys. B 24 038202
|
[1] |
Armand M and Tarascon J M 2008 Nature 451 652
|
[2] |
Yang Z, Zhang J, Kintner-Meyer M C, Lu X, Choi D, Lemmon J P and Liu J 2011 Chem. Rev. 111 3577
|
[3] |
Kim S W, Seo D H, Ma X, Ceder G and Kang K 2012 Adv. Energy Mater. 2 710
|
[4] |
Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han M H and Rojo T 2013 Energy Environ. Sci. 6 2312
|
[5] |
Pan H, Hu Y S and Chen L 2013 Energy Environ. Sci. 6 2338
|
[6] |
Slater M D, Kim D, Lee E and Johnson C S 2013 Adv. Funct. Mater. 23 947
|
[7] |
Doeff M M, Peng M Y, Ma Y and Jonghe L C D 1994 J. Electrochem. Soc. 141 L145
|
[8] |
Jian Z, Han W, Lu X, Yang H, Hu Y S, Zhou J, Zhou Z, Li J, Chen W, Chen D and Chen L 2013 Adv. Energy Mater. 3 156
|
[9] |
Pan H, Lu X, Yu X, Hu Y S, Li H, Yang X Q and Chen L 2013 Adv. Energy Mater. 3 1186
|
[10] |
Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu Y S, Li H, Armand M, Ikuhara Y, Chen L and Huang X 2013 Nat. Commun. 4 1870
|
[11] |
Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y S, Li H, Yang X Q, Chen L and Huang X 2013 Nat. Commun. 4 2365
|
[12] |
Barpanda P, Oyama G, Nishimura S, Chung S C and Yamada A 2014 Nat. Commun. 5 4358
|
[13] |
Kubota K, Yabuuchi N, Yoshida H, Dahbi M and Komaba S 2014 MRS Bulletin 39 416
|
[14] |
Li Y, Xu S, Wu X, Yu J, Wang Y, Hu Y S, Li H C and Huang X 2015 J. Mater. Chem. A 3 71
|
[15] |
Delmas C, Braconnier J J, Fouassier C and Hagenmuller P 1981 Solid State Ionics 3–4 165
|
[16] |
Braconnier J J, Delmas C and Hagenmuller P 1982 Mater. Res. Bull. 17 993
|
[17] |
Mendiboure A, Delmas C and Hagenmuller P 1985 J. Solid State Chem. 57 323
|
[18] |
Lu Z and Dahn J R 2001 J. Electrochem. Soc. 148 A1225
|
[19] |
Okada S, Takahashi Y, Kiyabu T, Doi T, Yamaki J and Nishida T 2006 210th ECS Meeting Abstracts, MA2006-02, 201
|
[20] |
Komaba S, Takei C, Nakayama T, Ogata A and Yabuuchi N 2010 Electrochem. Commun. 12 355
|
[21] |
Carlier D, Cheng J H, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang B J and Delmas C 2011 Dalton Trans. 40 9306
|
[22] |
Kim D, Kang S H, Slater M, Rood S, Vaughey J T, Karan N, Balasubramanian M and Johnson C S 2011 Adv. Energy Mater. 1 333
|
[23] |
Kim D, Lee E, Slater M, Lu W, Rood S and Johnson C S 2012 Electrochem. Commun. 18 66
|
[24] |
Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T and Nakai I 2012 Inorg. Chem. 51 6211
|
[25] |
Sathiya M, Hemalatha K, Ramesha K, Tarascon J M and Prakash A S 2012 Chem. Mater. 24 1846
|
[26] |
Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y and Komaba S 2012 Nat. Mater. 11
|
[27] |
Yabuuchi N, Yoshida H and Komaba S 2012 Electrochemistry 80 716
|
[28] |
Vassilaras P, Ma X, Li X and Ceder G 2013 J. Electrochem. Soc. 160 A207
|
[29] |
Yabuuchi N, Yano M, Yoshida H, Kuze S and Komaba S 2013 J. Electrochem. Soc. 160 A3131
|
[30] |
Yoshida H, Yabuuchi N and Komaba S 2013 Electrochem. Commun. 34 60
|
[31] |
Lee E, Lu J, Ren Y, Luo X, Zhang X,Wen J, Miller D, DeWahl, AHackney S and Key B 2014 Adv. Energy Mater. 4
|
[32] |
Li X, Wu D, Zhou Y N, Liu L, Yang X Q and Ceder G 2014 Electrochem. Commun. 49 51
|
[33] |
Sun X, Jin Y, Zhang C Y, Wen J W, Shao Y, Zang Y and Chen C H 2014 J. Mater. Chem. A 2 17268
|
[34] |
Xu J, Lee D H, Cl′ement R J, Yu X, Leskes M, Andrew, Pell J, Pintacuda G, Yang X Q, Grey C P and Meng Y S 2014 Chem. Mater. 26 1260
|
[35] |
Yu H, Guo S, Zhu Y, Ishida M and Zhou H 2014 Chem. Commun. 50 457
|
[36] |
Xu S Y, Wu X Y, Li Y M, Hu Y S and Chen L Q 2014 Chin. Phys. B 23 118202
|
[37] |
Delmas C, Fouassier C and Hagenmuller P 1980 Physica B+C 99 81
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|