CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Phase transformation and morphology tuning of β-NaYF4: Yb3+, Er3+ nanocrystals through K+ ions codoping |
Liang Zhi-Qin (梁志琴)a b, Zhao Su-Ling (赵谡玲)a b, Cui Yue (崔越)a b, Tian Li-Jiao (田丽娇)a b, Zhang Jun-Jie (张俊杰)a b, Xu Zheng (徐征)a b |
a Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China; b Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract In this work, a simple method to modulate the crystal phase and morphology with a large amount of K+ ions codoping is proposed. The phase changes to the mixture of β-NaYF4 and β -KYF4 with increasing the content of K+ ions to 80 mol%. When it exceeds 80 mol%, β -NaYF4 disappears gradually and β -KYF4 dominates with a poor crystalline. In addition, the morphology changes from nanosphere to nanoplate, and then to nanoprism, which indicates that a higher content of K+ ions favors the growth rates along [0001] than the [10-10] of the nanocrystals. Additionally, the upconversion (UC) luminescence properties and the ratio of red/green (R/G) UC intensity of samples with different phases and morphologies are detected, which makes it possible to tune the UC fluorescence by varying the concentration of K+ ions.
|
Received: 28 July 2014
Revised: 16 October 2014
Accepted manuscript online:
|
PACS:
|
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
74.25.Gz
|
(Optical properties)
|
|
42.70.-a
|
(Optical materials)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA032205), the National Natural Science Foundation of China (Grant No. 51272022), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012JBZ001). |
Corresponding Authors:
Zhao Su-Ling
E-mail: slzhao@bjtu.edu.cn
|
Cite this article:
Liang Zhi-Qin (梁志琴), Zhao Su-Ling (赵谡玲), Cui Yue (崔越), Tian Li-Jiao (田丽娇), Zhang Jun-Jie (张俊杰), Xu Zheng (徐征) Phase transformation and morphology tuning of β-NaYF4: Yb3+, Er3+ nanocrystals through K+ ions codoping 2015 Chin. Phys. B 24 037801
|
[1] |
Wang F, Han Y, Lim C S, Li Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H and Liu X G 2010 Nature 463 1061
|
[2] |
Zhang X M, Zhang J H, Zhang X, Chen L, Lu S Z and Wang X J 2007 J. Lumin. 122 958
|
[3] |
Heer S, Kömpe K, Güdel H U and Haase M 2004 Adv. Mater. 16 2102
|
[4] |
Hilderbrand S A, Shao F, Salthouse C, Mahmood U and Weissleder R 2009 Chem. Commun. 28 4188
|
[5] |
Idris N M, Gnanasammandhan M K, Zhang J, Ho P C, Mahendran R and Zhang Y 2012 Nat. Med. 18 1580
|
[6] |
Carling C J, Boyer J C and Branda N R 2009 J. Am. Chem. Soc. 131 10838
|
[7] |
Auzel F 2004 Chem. Rev. 104 139
|
[8] |
Haase M and Schäfer H 2011 Angew. Chem. Int. Ed. 50 5808
|
[9] |
Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y and Liu X G 2011 Nat. Mater. 10 968
|
[10] |
Pang M, Feng J, Song S Y, Wang Z and Zhang H J 2013 Cryst. Eng. Commun. 15 6901
|
[11] |
Zhang J J, Dai S X, Hu L L, Duan Z C and He D B 2006 Chin. Phys. 15 209
|
[12] |
Zhao L C, Guo F Y, Li M C and Lü Q 2009 Chin. Phys. B 18 4030
|
[13] |
Yang J, Li C X, Cheng Z Y, Zhang X M, Quan Z W, Zhang C M and Lin J 2007 J. Phys. Chem. C 111 18148
|
[14] |
Zhang C and Chen J 2010 Chem. Commun. 46 592
|
[15] |
Zeng Q H, Xue B, Zhang Y L, Wang D, Liu X M, Tu L P, Zhao H F, Kong X G and Zhang H 2013 Cryst. Eng. Commun. 15 4765
|
[16] |
Ye X C, Collins J E, Kang Y J, Chen J, Chen D T N, Yodh A G and Murray C B 2010 Proc. Nat. Acad Sci. 107 22430
|
[17] |
Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P and Yan C H 2006 J. Am. Chem. Soc. 128 6426
|
[18] |
Ahmad S, Prakash G V and Nagarajan R 2012 Inorg. Chem. 51 12748
|
[19] |
Li L, Zhou Z X, Yang W L, Li H and W Y 2013 Chin. Phys. Lett. 30 127103
|
[20] |
Schäfer H, Ptacek P, Eickmeier H and Haase M 2009 Adv. Funct. Mater. 19 3091
|
[21] |
Lü Q, Zhao L C, Guo F Y and Li M C 2009 Chin. Phys. B 18 4030
|
[22] |
Mao C S, Yang X H and Zhao L J 2013 Chem. Eng. J. 229 429
|
[23] |
Dou Q Q and Zhang Y 2011 Langmuir 27 13236
|
[24] |
Kale V, Soukka T, Hölsä J and Lastusaari M 2013 J. Nanopart. Res. 5 1
|
[25] |
Li Z Q and Zhang Y 2008 Nanotechnology 19 345606
|
[26] |
Li C X, Quan Z W, Yang J, Yang P P and Lin J 2007 Inorg. Chem. 46 6329
|
[27] |
Li C X, Yang J, Quan Z W, Yang P P, Kong D Y and Lin J 2007 Chem. Mater. 19 4933
|
[28] |
Liang X, Wang X, Zhuang J, Peng Q and Li Y 2007 Adv. Funct. Mater. 17 2757
|
[29] |
Ding M Y, Lu C H, Cao L H, Ni Y and Xu Z Z 2013 Cryst. Eng. Commun. 15 8366
|
[30] |
Patra A, Friend C S, Kapoor R and Prasad P N 2003 Appl. Phys. Lett. 83 284
|
[31] |
Judd B 1962 Phys. Rev. 127 750
|
[32] |
Li C X, Quan Z W, Yang P P, Huang S S, Lian H Z and Lin J 2008 J. Phys. Chem. C 112 13395
|
[33] |
Liu Y X, Wang D S, Shi J X, Peng Q and Li Y D 2013 Angew. Chem. Int. Ed. 52 4366
|
[34] |
Auzel F E 1973 Proceedings of the IEEE 61 758
|
[35] |
Vetrone F, Boyer J C, Capobianco J A, Speghini A and Bettinelli M 2003 Chem. Mater. 15 2737
|
[36] |
He E J, Liu N, Zhang M L, Qin Y F, Guan B G, Li Y and Guo M L 2012 Chin. Phys. B 21 073201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|