Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 027804    DOI: 10.1088/1674-1056/24/2/027804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-frequency properties of oil-phase-synthesized ZnO nanoparticles

Ding Hao-Feng (丁浩峰)a b, Yang Hai-Tao (杨海涛)b, Liu Li-Ping (柳丽平)b, Ren Xiao (任肖)b, Song Ning-Ning (宋宁宁)b, Shen Jun (沈俊)c, Zhang Xiang-Qun (张向群)b, Cheng Zhao-Hua (成昭华)b, Zhao Guo-Ping (赵国平)a b
a College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China;
b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Monodispersive ZnO nanoparticles each with a hexagonal wurtzite structure are facilely prepared by the high-temperature organic phase method. The UV-visible absorption peak of ZnO nanoparticles presents an obvious blue-shift from 385 nm of bulk ZnO to 369 nm. Both the real part and the image part of the complex permittivity of ZnO nanoparticles from 0.1 GHz to 10 GHz linearly decrease without obvious resonance peak appearing. The real parts of intrinsic permittivity of ZnO nanoparticles are about 5.7 and 5.0 at 0.1 GHz and 10 GHz respectively, and show an obvious size-dependent behavior. The dielectric loss angle tangent (tanδ) of ZnO nanoparticles with a different weight ratio shows a different decreasing law with the increase of frequency.
Keywords:  ZnO nanoparticles      synthesis      high-frequency properties  
Received:  14 May 2014      Revised:  18 September 2014      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  81.16.Be (Chemical synthesis methods)  
  62.25.Fg (High-frequency properties, responses to resonant or transient (time-dependent) fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274370 and 51471185) and the National Basic Research Program of China (Grant Nos. 2012CB933102 and 2011CB921801).
Corresponding Authors:  Yang Hai-Tao, Zhao Guo-Ping     E-mail:  htyang@iphy.ac.cn;zhaogp@uestc.edu.cn

Cite this article: 

Ding Hao-Feng (丁浩峰), Yang Hai-Tao (杨海涛), Liu Li-Ping (柳丽平), Ren Xiao (任肖), Song Ning-Ning (宋宁宁), Shen Jun (沈俊), Zhang Xiang-Qun (张向群), Cheng Zhao-Hua (成昭华), Zhao Guo-Ping (赵国平) High-frequency properties of oil-phase-synthesized ZnO nanoparticles 2015 Chin. Phys. B 24 027804

[1] Dijken A V, Meulenkamp E A, Vanmaekelbergh D and Meijerink 2000 J. Phys. Chem. B 104 1715
[2] Zhou Z Y, Zhao Y D and Cai Z S 2010 Appl. Surf. Sci. 256 4724
[3] Feldmann C 2003 Adv. Funct. Mater. 13 101
[4] Tokumoto M S, Pulcinelli S H, Santilli C V and Briois V 2003 J. Phys. Chem. B 107 568
[5] Ling Z Y and He L 2013 Chin. Phys. Lett. 30 107201
[6] Jia Z N, Zhang, X D, Liu Y, Wang Y F, Fan J, Liu C C and Zhao Y 2014 Chin. Phys. B 23 046106
[7] Wang J M and Gao L 2003 Inorg. Chem. Commun. 6 877
[8] Cheng P F, Li S T and Wang H 2013 Chin. Phys. B 22 107701
[9] Sato T, Tanigaki T, Suzuki H, Saito Y, Kido O, Kimura Y, Kaito C, Takeda A and Kaneko S 2003 J. Cryst. Growth 255 313
[10] Li D Z and Zhu R 2013 Chin. Phys. B 22 018502
[11] Liu B and Zeng H C 2003 J. Am. Chem. Soc. 125 4430
[12] Yu W D, Li X M and Gao X D 2005 Cryst. Growth Des. 5 151
[13] Kim J H, Choi W C, Kim H Y, Kang Y and Park Y K 2005 Powder Technology 153 166
[14] Viswanatha R, Sapra S, Satpati B, Satyam P V, Dev B N and Sarma D D 2004 J. Mater. Chem. 14 661
[15] Hsieh P T, Chen Y C, Kao K S and Wang C M 2008 Appl. Phys. A 90 317
[16] Ramirez A P, Haddon R C, Zhou O, Fleming R M, Zhang J, McClure S M and Smalley R E 1994 Science 265 84
[17] Ghosh P K, Jana S, Nandy S and Chattopadhyay K K 2007 Mater. Res. Bull. 42 505
[18] Ramprassad R, Zurcher P, Petras M, Miller M and Renaud P 2004 J. Appl. Phys. 96 519
[19] Piao Y Z, Kim Jaeyun, Na H B, Kim D, Baek J S, Ko M K, Lee J H, Shokouhimehr M and Hyeon T 2008 Nat. Mater. 7 242
[1] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[2] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[3] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[4] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[5] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[6] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[7] Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method
Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2021, 30(7): 077401.
[8] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[9] Critical behavior and effect of Sr substitution in double perovskite Ca2CrSbO6
Yuan-Yuan Jiao(焦媛媛), Jian-Ping Sun(孙建平), and Qi Cui(崔琦). Chin. Phys. B, 2021, 30(3): 037501.
[10] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[11] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[12] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[13] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[14] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[15] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
No Suggested Reading articles found!