Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024208    DOI: 10.1088/1674-1056/24/2/024208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical analysis of the mode coupling induced by heat of large-pitch micro-structured fibers

Zhang Hai-Tao (张海涛)a, Chen Dan (陈丹)b, Hao Jie (郝杰)a, Yan Ping (闫平)a, Gong Ma-Li (巩马理)a
a Center for Photonics and Electronics, State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
b Southwest Institute of Technical Physics, Chengdu 610041, China
Abstract  In this paper, a theoretical model to analyze the mode coupling induced by heat, when the fiber amplifier works at high power configuration, is proposed. The model mainly takes into consideration the mode field change due to the thermally induced refractive index change and the coupling between modes. A method to predict the largest average output power of fiber is also proposed according to the mode coupling theory. The largest average output power of a large pitch fiber with a core diameter of 190 μm and an available pulse energy of 100 mJ is predicted to be 540 W, which is the highest in large mode field fibers.
Keywords:  fiber amplifier      large pitch fiber      mode coupling  
Received:  04 July 2014      Revised:  16 August 2014      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  42.55.Wd (Fiber lasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61475081).
Corresponding Authors:  Zhang Hai-Tao, Gong Ma-Li     E-mail:  zhanghaitao@mail.tsinghua.edu.cn;gongml@mail.tsinghua.edu.cn

Cite this article: 

Zhang Hai-Tao (张海涛), Chen Dan (陈丹), Hao Jie (郝杰), Yan Ping (闫平), Gong Ma-Li (巩马理) Theoretical analysis of the mode coupling induced by heat of large-pitch micro-structured fibers 2015 Chin. Phys. B 24 024208

[1] Jansen F, Stutzki F, Liem A, Jauregui C, Limpert J and Tünnermann A 2012 Advanced Solid-State Photonics, Optical Society of America, AT1A. 4
[2] Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J and Tünnermann A 2012 Opt. Lett. 37 1073
[3] Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J and Tünnermann A 2011 Opt. Express 19 255
[4] Stutzki F, Jansen F, Jauregui C, Limpert J and Tünnermann A 2011 Opt. Lett. 38 97
[5] Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J and Tünnermann A 2011 Opt. Express 19 13219
[6] Wirth C, Schreiber T, Rekas M, Tsybin I, Peschel T, Eberhardt R and Tünnermann A 2011 SPIE LASE, International Society for Optics and Photonics, 75801H-75801H-6
[7] Eidam T, Hädrich S, Jansen F, Stutzki F, Rothhardt J, Carstens H and Tünnermann A 2011 Opt. Express 19 8656
[8] Stutzki F, Jansen F, Eidam T, Steinmetz A, Jauregui C, Limpert J and Tünnermann A 2011 Opt. Lett. 36 689
[9] Wan P, Yang L M and Liu J 2013 Opt. Express 21 29854
[10] Limpert J, Röser F, Schimpf D N, Seise E, Eidam T, Hädrich S and Rothhardt J 2009 IEEE J. Sel. Top. Quantum Electron. 15 159
[11] Jiang Z and Marciante J R 2008 J. Opt. Soc. Am. B 25 247
[12] Jauregui C, Eidam T, Limpert J and Tünnermann A 2011 Opt. Express 19 3258
[13] Smith A V and Smith J J 2011 Opt. Express 19 10181
[14] Digonnet M J F, Sadowski R W, Shaw H J and Pantell R H 1997 Opt. Fiber Technol. 3 44
[15] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W and Barty C P J 2008 Opt. Express 16 13240
[16] Brown D C and Hoffman H J 2005 Thermal IEEE J. Quantum Electron. 37 207
[17] Ke W, Wang X, Bao X and Shu X 2013 Opt. Express 21 14272
[18] Gong M, Yuan Y, Li C, Yan P, Zhang H and Liao S 2007 Opt. Express 15 3236
[19] Okamoto K 2006 Fundamentals of Optical Waveguides, 2nd edn. (San Diego: Academic)
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[3] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
[4] Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding
Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(12): 124205.
[5] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[6] All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫). Chin. Phys. B, 2020, 29(11): 114206.
[7] Influence of warm eddies on sound propagation in the Gulf of Mexico
Yao Xiao(肖瑶), Zhenglin Li(李整林), Jun Li(李鋆), Jiaqi Liu(刘佳琪), Karim G Sabra. Chin. Phys. B, 2019, 28(5): 054301.
[8] Scaling of Yb-doped photonic crystal fiber to 200 μm core diameter for high beam quality laser output
Kuo Meng(孟阔), Lian-Qing Zhu(祝连庆), Fei Luo(骆飞). Chin. Phys. B, 2017, 26(5): 054212.
[9] Fiber core mode leakage induced by refractive index variation in high-power fiber laser
Ping Yan(闫平), Xuejiao Wang(王雪娇), Yusheng Huang(黄昱升), Chen Fu(付晨), Junyi Sun(孙骏逸), Qirong Xiao(肖起榕), Dan Li(李丹), Mali Gong(巩马理). Chin. Phys. B, 2017, 26(3): 034205.
[10] High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz
Zhi-Guo Lv(吕志国), Hao Teng(滕浩), Li-Na Wang(王立娜), Jun-Li Wang(王军利), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094208.
[11] 980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier
Ping-Xue Li(李平雪), Yi-Fei Yao(姚毅飞), Jun-Jie Chi(池俊杰), Hao-Wei Hu(胡浩伟), Guang-Ju Zhang(张光举), Bo-Xing Liang(梁博兴), Meng-Meng Zhang(张孟孟), Chun-Mei Ma(马春媚), Ning Su(苏宁). Chin. Phys. B, 2016, 25(8): 084207.
[12] Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier
Song Rui (宋锐), Lei Cheng-Min (雷成敏), Chen Sheng-Ping (陈胜平), Wang Ze-Feng (王泽锋), Hou Jing (侯静). Chin. Phys. B, 2015, 24(8): 084207.
[13] A novel method of evaluating large mode area fiber design by brightness factor
Zhang Hai-Tao (张海涛), Chen Dan (陈丹), Ren Hai-Cui (任海翠), Yan Ping (闫平), Gong Ma-Li (巩马理). Chin. Phys. B, 2015, 24(2): 024207.
[14] Multi-mode coupling analysis of a sub-terahertz band planar corrugated Bragg reflector
Liu Guo (刘国), Luo Yong (罗勇), Wang Jian-Xun (王建勋), Shu Guo-Xiang (舒国响). Chin. Phys. B, 2015, 24(11): 118403.
[15] Theory of noise in a kilo-Hz cascaded high-energy Yb-doped nanosecond pulsed fiber amplifier
Liu Ming (刘明), Zhang Hai-Tao (张海涛), Gong Ma-Li (巩马理), Zhao Yue-Jin (赵跃进), Cheng Wen-Yong (程文雍), Meng Kuo (孟阔), Zheng Chao (郑超), Chen Yi-Zhu (陈倚竹). Chin. Phys. B, 2014, 23(4): 044214.
No Suggested Reading articles found!