Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024207    DOI: 10.1088/1674-1056/24/2/024207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A novel method of evaluating large mode area fiber design by brightness factor

Zhang Hai-Tao (张海涛)a, Chen Dan (陈丹)b, Ren Hai-Cui (任海翠)a, Yan Ping (闫平)a, Gong Ma-Li (巩马理)a
a Center for Photonics and Electronics, State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
b Southwest Institute of Technical Physics, Chengdu 610041, China
Abstract  A novel evaluation term and a more reasonable criterion, which is described by a new parameter of brightness factor for active large mode area fiber design, are presented. The brightness factor evaluation method is based on the transverse mode competition mechanism in fiber lasers and amplifiers. The brightness factor can be seen as a description of fiber general property since it can represent the output laser brightness of the fiber laser system and because of its ability to resist the nonlinear effect. A core-doped active large pitch fiber with a core diameter of 190 μ and a mode-field diameter of 180 μm is designed by this method, and the designed fiber allows effective single-mode operation.
Keywords:  brightness factor      large pitch fiber      mode competition  
Received:  03 July 2014      Revised:  16 August 2014      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  42.55.Wd (Fiber lasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61475081).
Corresponding Authors:  Zhang Hai-Tao, Gong Ma-Li     E-mail:  zhanghaitao@mail.tsinghua.edu.cn;gongml@mail.tsinghua.edu.cn

Cite this article: 

Zhang Hai-Tao (张海涛), Chen Dan (陈丹), Ren Hai-Cui (任海翠), Yan Ping (闫平), Gong Ma-Li (巩马理) A novel method of evaluating large mode area fiber design by brightness factor 2015 Chin. Phys. B 24 024207

[1] Gapontsev V, Fomin V, Ferin A and Abramov M 2010 OSA Technical Digest Series, Washington, DC, paper AWA1
[2] Carter A, Samson B, Tankala K, Machewirth D P, Khitrov V, Manyam U H, Gonthier F and Seguin F 2005 Boulder Damage Symposium XXXVI, International Society for Optics and Photonics, p. 561
[3] Limpert J, Schreiber T, Liem A, Nolte S, Zellmer H, Peschel T, Guyenot V and Tünnermann A 2005 Opt. Express 11 2982
[4] Bhutta T, Mackenzie J I, Shepherd D P and Beach R J 2002 J. Opt. Soc. Am. B 19 1539
[5] Koplow J P, Kliner D A and Goldberg L 2000 Opt. Lett. 25 442
[6] Lefrancois S, Liu C, Stock M L, Sosnowski T S, Galvanauskas A and Wise F W 2013 Opt. Lett. 38 43
[7] Limpert J, Stutzki F, Jansen F, Otto H J, Eidam T, Jauregui C and Tunnermann A 2012 Light: Science & Applications 1 e8
[8] Marciante J R, Shkunov V V and Rockwell D A 2012 Opt. Express 20 20238
[9] Siegman A E 2007 J. Opt. Soc. Am. B 24 1677
[10] Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J and Tünnermann A 2012 Opt. Lett. 37 1073
[11] Jansen F, Stutzki F, Liem A, Jauregui C, Limpert J and Tünnermann A 2012 Advanced Solid-State Photonics, Optical Society of America, AT1A. 4
[12] Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J and Tünnermann A 2011 Opt. Express 19 255
[13] Stutzki F, Jansen F, Jauregui C, Limpert J and Tünnermann A 2011 Opt. Lett. 38 97
[14] Jansen F, Stutzki F, Otto H J, Baumgartl M, Jauregui C, Limpert J and Tünnermann A 2010 Opt. Express 18 26834
[15] Dong L, Peng X and Li J 2007 J. Opt. Soc. Am. B 24 1689
[16] Gong M, Yuan Y, Li C, Yan P, Zhang H and Liao S 2007 Opt. Express 15 3236
[17] Seurin J F, Xu G, Wang Q, Guo B, Leeuwen R V, Miglo A, Pradhan P, Wynn J D, Khalfin V and Ghosh C 2010 Proc. SPIE 7615 1
[18] Liao S, Gong M and Zhang H 2009 Laser Physics 19 437
[1] Theoretical analysis of the mode coupling induced by heat of large-pitch micro-structured fibers
Zhang Hai-Tao (张海涛), Chen Dan (陈丹), Hao Jie (郝杰), Yan Ping (闫平), Gong Ma-Li (巩马理). Chin. Phys. B, 2015, 24(2): 024208.
[2] Influence of mode competition on beam quality of fiber amplifier
Xiao Qi-Rong (肖起榕), Yan Ping (闫平), Sun Jun-Yi (孙骏逸), Chen Xiao (陈霄), Ren Hai-Cui (任海翠), Gong Ma-Li (巩马理). Chin. Phys. B, 2014, 23(10): 104221.
[3] Effect of mode-mode competition on atom-atom entanglement
Wu Qin(吴琴), Fang Mao-Fa(方卯发), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2010, 19(2): 024209.
[4] Anisotropic optical feedback of single frequency intra-cavity He--Ne laser
Zhou Lu-Fei(周鲁飞), Zhang Bin(张斌), Zhang Shu-Lian(张书练), Tan Yi-Dong(谈宜东), and Liu Wei-Xin(刘维新). Chin. Phys. B, 2009, 18(3): 1141-1146.
[5] The entanglement between two isolated atoms in double mode--mode competition model
Wu Qin(吴琴), Fang Mao-Fa(方卯发), Cai Jian-Wu(蔡建武), and Hu Yao-Hua(胡要花). Chin. Phys. B, 2009, 18(12): 5336-5341.
[6] Quantum entanglement in the mode-mode competition system
Wu Qin(吴琴), Fang Mao-Fa(方卯发), Feng Yong-Zhen(冯永振), and Hu Yao-Hua(胡要花). Chin. Phys. B, 2008, 17(8): 2963-2968.
[7] Atom--photon entanglement in the system with competing k-photon and l-photon transitions
Wu Qin(吴琴), Fang Mao-Fa(方卯发), and Hu Yao-Hua(胡要花). Chin. Phys. B, 2007, 16(7): 1971-1975.
[8] Optical feedback characteristics in a helium neon laser with a birefringent internal cavity
Mao Wei(毛威), Zhang Shu-Lian(张书练), Xu Ting(徐亭), Wan Xin-Jun(万新军), and Liu Gang(刘刚). Chin. Phys. B, 2007, 16(11): 3416-3422.
[9] Strong optical feedback in birefringent dual frequency laser
Mao Wei (毛威), Zhang Shu-Lian (张书练). Chin. Phys. B, 2006, 15(2): 340-346.
[10] Atomic dynamics in the mode-mode competition system
Wu Qin (吴琴), Fang Mao-Fa (方卯发). Chin. Phys. B, 2004, 13(9): 1432-1437.
No Suggested Reading articles found!