Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118403    DOI: 10.1088/1674-1056/24/11/118403
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multi-mode coupling analysis of a sub-terahertz band planar corrugated Bragg reflector

Liu Guo (刘国), Luo Yong (罗勇), Wang Jian-Xun (王建勋), Shu Guo-Xiang (舒国响)
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Planar Bragg reflector operating in the sub-terahertz wavelength installed at the upstream end of a sheet beam backward wave oscillator (BWO) is very promising to minimize the whole circuit structure and make it more compact. In this paper, a sub-terahertz wavelength (0.18-0.22 THz) tunable planar Bragg reflector is numerically analyzed by using multi-mode coupling theory (MCT). The operating mode TE10 and dominant coupling mode TE01 are mainly considered in this theory. Reflection and transmission performance of the reflector are demonstrated in detail and the results, in excellent agreement with the theoretical analysis and simulation, are also presented in this paper. Self-and cross-coupling coefficients between these two modes are presented as well. The reflector behaviors with different Bragg dimensions are discussed and analyzed in the 0.16-0.22 THz range. The analysis in this paper can be of benefit to the design and fabrication of the whole BWO circuit.
Keywords:  planar Bragg reflector      multi-mode coupling theory      sub-terahertz BWO  
Received:  06 May 2015      Revised:  04 July 2015      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  84.40.Dc (Microwave circuits)  
  84.40.Az (Waveguides, transmission lines, striplines)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. G0501040161101040).
Corresponding Authors:  Liu Guo     E-mail:  liuguo.uestc@gmail.com

Cite this article: 

Liu Guo (刘国), Luo Yong (罗勇), Wang Jian-Xun (王建勋), Shu Guo-Xiang (舒国响) Multi-mode coupling analysis of a sub-terahertz band planar corrugated Bragg reflector 2015 Chin. Phys. B 24 118403

[1] Bratman V L, Denisov G G, Ginzberg N S and Petelin M I;1983 IEEE J. Quantum Electronics 19 282
[2] McCowan R B, Fliflet A W and Gold S H 1991 NRL Memorandum Report, February 16
[3] Xin Q, Zhang S C, Zhang H B, Kong Y Y, Chai B and Zhang Y;2010 J. Infrared Milli. Terahz. Waves 31 1278
[4] Orzechowski T J, Anderson B R, Clark J C, Fawley W M, Paul A C, Prosnitz D, Scharlemann E T, Yarema S M, Hopkins D B, Sessler A M and Wurtele J S;1986 Phys. Rev. Lett. 57 2172
[5] He W, Donaldson C R, Zhang L, Ronald K, McElhinney P and Cross A W;2013 Phys. Rev. Lett. 110 165101
[6] Xu X, Wei Y Y, Shen F, Yin H R, Xu J, Gong Y B and Wang W X;2012 Phys. Plasma 19 013113
[7] Cai J C, Hu L L, Ma G W, Chen H B, Jin X and Chen H B;2015 Chin. Phys. B 24 060701
[8] Xu X, Wei Y Y, Shen F, Huang M Z, Tang T, Duan Z Y and Gong Y B;2012 Chin. Phys. B 21 068402
[9] Ding X Y, Liu H and Lü Z S;2010 J. Infrared Milli. Terahz. Waves 31 1156
[10] Liu G, He W, Cross A W, Yin H and Bowes D;2013 J. Phys. D: Appl. Phys. 46 345102
[11] Mineo M and Paoloni C;2010 IEEE Trans. Electron. Dev. 57 1481
[12] Wang Z L, Gong Y B, Wei Y Y, Duan Z Y, Zhang Y B, Yue L N, Gong H R, Yin H R, Lu Z G, Xu J and Feng J J;2013 IEEE Trans. Electron. Dev. 60 471
[13] Ginzburg N S, Sergeev A S and Peskov N Y;2000 Tech. Phys. Lett. 26 701
[14] Ginzburg N S, Malkin A M and Peskov N Y;2009 Appl. Phys. Lett. 95 043504
[15] Chong C K, McDermott D B, Ragezhi M M, Luhmann N C, Pretterebner J, Wagner D, Thumm M, Caplan M and Kulke B;1992 IEEE Trans. Plasma Sci. 20 393
[16] Katsenelenbaum B Z, Mercader L, Pereyaslavets M, Sorolla A M and Thumm M 1998 Theory of Nonuniform Waveguides: the Cross-Section Method (London: The Institution of Electrical Engineers) p. 159
[17] CST Corp. CST MWS Tutorials http://www.cstchina.cn/
[1] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[2] Theoretical and experimental study on frequency pushing effect of magnetron
Kang Li(李慷), Yi Zhang(张益), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2019, 28(11): 118402.
[3] Design and development of radio frequency output window for circular electron-positron collider klystron
Zhijun Lu(陆志军), Shigeki Fukuda, Zusheng Zhou(周祖圣), Shilun Pei(裴士伦), Shengchang Wang(王盛昌), Ouzheng Xiao(肖欧正), UnNisa Zaib, Bowen Bai(白博文), Guoxi Pei(裴国玺), Dong Dong(董东), Ningchuang Zhou(周宁闯), Shaozhe Wang(王少哲), Yunlong Chi(池云龙). Chin. Phys. B, 2018, 27(11): 118402.
[4] Tunable circularly-polarized turnstile-junction mode converter for high-power microwave applications
Xiao-Yu Wang(王晓玉), Yu-Wei Fan(樊玉伟), Ting Shu(舒挺), Cheng-Wei Yuan(袁成卫), Qiang Zhang(张强). Chin. Phys. B, 2018, 27(6): 068401.
[5] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[6] A high-power subterahertz surface wave oscillator with separated overmoded slow wave structures
Guang-Qiang Wang(王光强), Jian-Guo Wang(王建国), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳), Shuang Li(李爽). Chin. Phys. B, 2016, 25(12): 128401.
[7] Modeling and experimental studies of a side band power re-injection locked magnetron
Wen-Jun Ye(叶文军), Yi Zhang(张益), Ping Yuan(袁萍), Hua-Cheng Zhu(朱铧丞), Ka-Ma Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2016, 25(12): 128402.
[8] Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons
Song Yue(岳松), Dong-ping Gao(高冬平), Zhao-chuan Zhang(张兆传), Wei-long Wang(王韦龙). Chin. Phys. B, 2016, 25(11): 118403.
[9] Mode analysis and design of 0.3-THz Clinotron
Shuang Li(李爽), Jian-Guo Wang(王建国), Guang-Qiang Wang(王光强), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳). Chin. Phys. B, 2016, 25(10): 108401.
[10] Power-combining based on master—slave injection-locking magnetron
Ping Yuan(袁萍), Yi Zhang(张益), Wenjun Ye(叶文军), Huacheng Zhu(朱铧丞), Kama Huang(黄卡玛), Yang Yang(杨阳). Chin. Phys. B, 2016, 25(7): 078402.
[11] Analysis and experiments of self-injection magnetron
Yi Zhang(张益), Wen-Jun Ye(叶文军), Ping Yuan(袁萍), Huan-Cheng Zhu(朱铧丞), Yang Yang(杨阳), Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2016, 25(4): 048402.
[12] Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube
Fang-ming He(何昉明), Wen-qiu Xie(谢文球), Ji-run Luo(罗积润), Min Zhu(朱敏), Wei Guo(郭炜). Chin. Phys. B, 2016, 25(3): 038401.
[13] A novel multi-pin rectangular waveguide slow-wave structure based backward wave amplifier at 340 GHz
Zhang Kai-Chun (张开春), Qi Zhong-Kuo (漆中阔), Yang Zhao-Long (杨召龙). Chin. Phys. B, 2015, 24(7): 079402.
[14] Theoretical and numerical studies on a planar gyrotronwith transverse energy extraction
Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥). Chin. Phys. B, 2014, 23(10): 108401.
[15] Complete eigenmode analysis of a ladder-type multiple-gap resonant cavity
Zhang Chang-Qing (张长青), Ruan Cun-Jun (阮存军), Zhao Ding (赵鼎), Wang Shu-Zhong (王树忠), Yang Xiu-Dong (杨修东). Chin. Phys. B, 2014, 23(8): 088401.
No Suggested Reading articles found!