Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054301    DOI: 10.1088/1674-1056/28/5/054301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of warm eddies on sound propagation in the Gulf of Mexico

Yao Xiao(肖瑶)1,2, Zhenglin Li(李整林)1, Jun Li(李鋆)3, Jiaqi Liu(刘佳琪)4, Karim G Sabra5
1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 China State Shipbuilding Corporation(CSSC) Systems Engineering Research Institute, Beijing 100049, China;
4 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China;
5 Woodruff School Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0405, USA
Abstract  An automatic detection method is employed to identify and track eddies in the Gulf of Mexico. The physical parameters of the eddies, such as lifespan, radius, and distribution position are first examined and used to determine the spatio-temporal evolution of a strong warm eddy separated from the Mexico current. Then, the influence of this strong warm eddy on sound propagation during its lifespan are comprehensively analyzed with the parabolic equation and explained by using the normal mode and ray theories. Additionally, the influence of mesoscale eddies on the redistribution of total depth-integrated energy among the normal modes in the deep water is also discussed. The variation of arrival angle is investigated to explain the spreading acoustic energy caused by eddies. Overall, the results show that warm eddies can change the propagation paths and cause the convergence zone to broaden and approach the sound source. Moreover, the warm eddy can disperse sound energy and cause the total depth-integrated energy to incline to a lower normal mode. Throughout the whole of these three periods (eddy generating, eddy maturing, and eddy terminating), the fluctuation in the transmission loss is up to 30 dB (depending on the relative location of eddy center to the source).
Keywords:  mesoscale eddies      sound propagation      mode coupling      acoustic energy disturbance  
Received:  28 January 2019      Revised:  22 February 2019      Accepted manuscript online: 
PACS:  43.30.+m (Underwater sound)  
  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Cq (Ray propagation of sound in water)  
  92.10.Vz (Underwater sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).
Corresponding Authors:  Zhenglin Li     E-mail:  lzhl@mail.ioa.ac.cn

Cite this article: 

Yao Xiao(肖瑶), Zhenglin Li(李整林), Jun Li(李鋆), Jiaqi Liu(刘佳琪), Karim G Sabra Influence of warm eddies on sound propagation in the Gulf of Mexico 2019 Chin. Phys. B 28 054301

[1] Munk W 2011 Tellus Ser. A 63 190
[2] Zhang Z, Wang W and Qiu B 2014 Science 345 322
[3] Chen G, Hou Y and Chu X 2011 J. Geophys. Res. Oceans 116 C06018
[4] Chelton D B, Schlax M G and Samelson R M 2011 Prog. Oceanography 91 167
[5] Shang E C 1989 J. Acoust. Soc. Am. 85 1531
[6] Henrick R F, Siegmann W L and Jacobson M J 1977 J. Acoust. Soc. Am. 61 860
[7] Henrick R F, Jacobson M J and Siegmann W L 1980 J. Acoust. Soc. Am. 67 121
[8] Hall M V and Irving M A 1989 J. Acoust. Soc. Am. 86 1465
[9] Vastano A C and Owens G E 1973 J. Phys. Oceanography 3 470
[10] Weinberg N L and Zabalgogeazcoa X 1977 J. Acoust. Soc. Am. 62 888
[11] Baer R N 1981 J. Acoust. Soc. Am. 69 70
[12] Lawrence M W 1983 J. Acoust. Soc. Am. 73 474
[13] Munk W H 1980 J. Phys. Oceanography 10 596
[14] Chen C, Yang K D, Ma Y L and Duan R 2016 Chin. Phys. Lett. 33 104302
[15] Heaney K D and Campbell R L 2016 J. Acoust. Soc. Am. 139 918
[16] Dong C, Nencioli F, Yu L and Mcwilliams J C 2011 IEEE Geosci. Remote Sens. Lett. 8 1055
[17] von Schuckmann K, Le Traon P Y, Alvarez-Fanjul E, Axell L, Balmaseda M, Breivik L A, Brewin R J W, Bricaud C, Drevillon M and Drillet Y 2016 J. Oper. Oceanogr. 9 s235
[18] Ferry N, Parent L, Masina S, Storto A, Haines K, Valdivieso M, Barnier B, Molines J, Zuo H and Balmaseda M CMEMS Version Scope: Version 1
[19] Zeddies D, Denes S, Pyć C and Spring S 2017 Contract 2017 111331
[20] Collins M D 1992 J. Acoust. Soc. Am. 92 2069
[21] Collins M D 1993 J. Acoust. Soc. Am. 93 1736
[22] Jensen F B 1993 Acoustic Signal Processing for Ocean Exploration (Moura J M F and Lourtie I M G, Ed.) (Dordrecht: Springer) pp. 3-20
[23] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics (New York: Springer)
[24] Porter M B 1992 the KRAKEN Normal Mode Program, Report
[25] Porter M B and Bucker H P 1987 J. Acoust. Soc. Am. 82 1349
[26] Dong C 2016 Oceanic Eddy Detection and Analysis (Beijing: Science Press) pp. 94-97 (in Chinese)
[1] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[2] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[3] Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding
Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(12): 124205.
[4] Mesoscale eddies and their dispersive environmental impacts in the Persian Gulf
Amin Raeisi, Abbasali Bidokhti, Seyed Mohammad Jafar Nazemosadat, Kamran Lari. Chin. Phys. B, 2020, 29(8): 084701.
[5] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[6] Fiber core mode leakage induced by refractive index variation in high-power fiber laser
Ping Yan(闫平), Xuejiao Wang(王雪娇), Yusheng Huang(黄昱升), Chen Fu(付晨), Junyi Sun(孙骏逸), Qirong Xiao(肖起榕), Dan Li(李丹), Mali Gong(巩马理). Chin. Phys. B, 2017, 26(3): 034205.
[7] Three-dimensional parabolic equation model for seismo-acoustic propagation:Theoretical development and preliminary numerical implementation
Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Hai-Gang Zhang(张海刚). Chin. Phys. B, 2017, 26(11): 114301.
[8] Developments of parabolic equation method in the period of 2000-2016
Chuan-Xiu Xu(徐传秀), Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Jia-Qi Liu(刘佳琪), Shi-Zhao Zhang(张士钊). Chin. Phys. B, 2016, 25(12): 124315.
[9] Theoretical analysis of the mode coupling induced by heat of large-pitch micro-structured fibers
Zhang Hai-Tao (张海涛), Chen Dan (陈丹), Hao Jie (郝杰), Yan Ping (闫平), Gong Ma-Li (巩马理). Chin. Phys. B, 2015, 24(2): 024208.
[10] Multi-mode coupling analysis of a sub-terahertz band planar corrugated Bragg reflector
Liu Guo (刘国), Luo Yong (罗勇), Wang Jian-Xun (王建勋), Shu Guo-Xiang (舒国响). Chin. Phys. B, 2015, 24(11): 118403.
[11] Modeling and analysis of silicon-on-insulator elliptical microring resonators for future high-density integrated photonic circuits
Xiong Kang(熊康), Xiao Xi(肖希), Hu Ying-Tao(胡应涛), Li Zhi-Yong(李智勇), Chu Tao(储涛), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中) . Chin. Phys. B, 2012, 21(7): 074203.
[12] Complete leaky mode coupling in dual-core photonic crystal fibre based on the coupled-mode theory
Yuan Jin-Hui(苑金辉), Yu Chong-Xiu(余重秀), Sang Xin-Zhu(桑新柱), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(6): 064101.
[13] Mueller matrix analysis for all optical fiber co-existence of birefringence-polarization dependent gain-mode coupling at a single wavelength
Shang Chao(尚超), Wu Chong-Qing(吴重庆), Li Zheng-Yong(李政勇), Yang Shuang-Shou(杨双收), Gao Kai-Qiang(高凯强), Yu Kuang-Lu(余贶琭), and Feng Zhen(冯震) . Chin. Phys. B, 2011, 20(11): 110201.
[14] Acoustic longitudinal mode coupling in w-shaped Al/Ge Co-doped fibre
Li Hong-Liang(李宏亮), Zhang Wei(张巍), Huang Yi-Dong(黄翊东), and Peng Jiang-De(彭江得) . Chin. Phys. B, 2011, 20(10): 104211.
[15] Effects of memory on scaling behaviour of Kardar–Parisi–Zhang equation
Tang Gang(唐刚), Hao Da-Peng(郝大鹏), Xia Hui(夏辉), Han Kui(韩奎), and Xun Zhi-Peng(寻之朋). Chin. Phys. B, 2010, 19(10): 100508.
No Suggested Reading articles found!