Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118702    DOI: 10.1088/1674-1056/24/11/118702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons

Wang Bao-Ying (王宝英)a, Gong Yu-Bing (龚玉兵)b
a Library, Ludong University, Yantai 264025, China;
b School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
Abstract  We numerically study the effect of the channel noise on the spiking synchronization of a scale-free Hodgkin-Huxley neuron network with time delays. It is found that the time delay can induce synchronization transitions at an intermediate and proper channel noise intensity, and the synchronization transitions become strongest when the channel noise intensity is optimal. The neurons can also exhibit synchronization transitions as the channel noise intensity is varied, and this phenomenon is enhanced at around the time delays that can induce the synchronization transitions. It is also found that the synchronization transitions induced by the channel noise are dependent on the coupling strength and the network average degree, and there is an optimal coupling strength or network average degree with which the synchronization transitions become strongest. These results show that by inducing synchronization transitions, the channel noise has a big regulation effect on the synchronization of the neuronal network. These findings could find potential implications for the information transmission in neural systems.
Keywords:  channel noise      scale-free network      time delay      synchronization transition  
Received:  11 May 2015      Revised:  18 June 2015      Accepted manuscript online: 
PACS:  87.19.lc (Noise in the nervous system)  
  87.19.lm (Synchronization in the nervous system)  
  87.19.lj (Neuronal network dynamics)  
Fund: Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2012AM013).
Corresponding Authors:  Gong Yu-Bing     E-mail:  gongyubing@ustc.edu

Cite this article: 

Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵) Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons 2015 Chin. Phys. B 24 118702

[1] Salvador R, Suckling J, Coleman M R, Pickard J D, Menon D and Bullmore E 2005 Cereb. Cortex 15 1332
[2] Reijneveld J C, Ponten S C, Berendse H W and Stam C J;2007 Neurophysiology 118 2317
[3] Stam C J and Reijneveld J C;2007 Nonlin. Biomed. Phys. 1 3
[4] Honey C J, Kotter R, Breakspear M and Sporns O;2007 Proc. Nat. Acad. Sci. USA 104 10240
[5] Eguíluz V M, Chialvo D R, Cecchi G A, Baliki M and Apkarian A V;2005 Phys. Rev. Lett. 94 018102
[6] Kaiser M, Martin R, Andras P and Young M P;2007 Eur. J. Neurosci. 25 3185
[7] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S;2008 Phys. Rep. 469 93
[8] Suykens J A K and Osipov G V;2008 Chaos 18 037101
[9] Gray C M and Singer W;1989 Proc. Natl. Acad. Sci. USA 86 1698
[10] Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel H D I, Sejnowski Y J and Laurent G;2001 Neuron 30 553
[11] Mehta M R, Lee A K and Wilson M A 2001 Nature 417 741
[12] Levy R, Hutchison W D, Lozano A M and Dostrovsky J O 2000 J. Neurosci. 20 7766
[13] Mormann F, Kreuz T, Andrzejak R G, David P, Lehnertz K and Elger C E;2003 Epilepsy. Res. 53 173
[14] Bahar S;2004 Fluct. Noise Lett. 4 L87
[15] Wang Q Y, Lu Q S and Chen G R;2007 Physica A 374 869
[16] Yoshioka M;2005 Phys. Rev. E 71 065203R
[17] Zheng Y H and Lu Q S;2008 Physica A 387 3719
[18] Hasegawa H;2005 Phys. Rev. E 72 056139
[19] Wang L, Gong Y B, Xu B and Wu Y N;2013 Sci. China Chem. 56 648
[20] Wang Q Y, Lu Q S and Chen G R;2007 Europhys. Lett. 77 10004
[21] Wang Q Y, Murks A, Perc M and Lu Q S;2011 Chin. Phys. B 20 040504
[22] Dhamala M, Jirsa V K and Ding M Z;2004 Phys. Rev. Lett. 92 074104
[23] Rossoni E, Chen Y H, Ding M Z and Feng J F;2005 Phys. Rev. E 71 061904
[24] Roxin A, Brunel N and Hansel D;2005 Phys. Rev. Lett. 94 238103
[25] Ko T W and Ermentrout G B;2007 Phys. Rev. E 76 056206
[26] Burić N, Todorović K and Vasović N;2008 Phys. Rev. E 78 036211
[27] Adhikari B, Prasad A and Dhamala M;2011 Chaos 21 023116
[28] Sun X J, Yang B H and Wu Y Xiao J H 2014 Acta Phys. Sin. 63 180507 (in Chinese)
[29] Wang Q Y, Lu Q S and Chen G R;2008 Int. J. Bifurcat. Chaos 18 1189
[30] Wang Q Y, Duan Z S, Perc M and Chen G R;2008 Europhys. Lett. 83 50008
[31] Wang Q Y, Perc M, Duan Z S and Chen G R;2009 Phys. Rev. E 80 026206
[32] Wang Q Y, Perc M, Duan Z S and Chen G R;2010 Physica A 389 3299
[33] Wang Q Y, Chen G R and Perc M;2011 PLoS One 6 e15851
[34] Guo D Q, Wang Q Y and Perc M;2012 Phys. Rev. E 85 061905
[35] Hao Y H, Gong Y B, Wang L, Ma X G and Yang C L;2011 Chaos Soliton. Fract. 44 260
[36] Xu B, Gong Y B, Wang L and Wu Y N;2013 Nonlin. Dyn. 72 79
[37] Gong Y B, Lin X, Wang L and Hao Y H;2011 Sci. China Chem. 54 1498
[38] Sun X J, Lei J Z, Perc M, Kurths J and Chen G R;2011 Chaos 21 016110
[39] Hu G and Huang X H;2014 Chin. Phys. B 23 108703
[40] Jia B;2014 Chin. Phys. B 23 050510
[41] Hodgkin A L and Huxley A F;1952 J. Physiol. 117 500
[42] Gammaitoni L, Hänggi P, Jung P and Marchesoni F;1998 Rev. Mod. Phys. 70 223
[43] Schmid G, Goychuk I and Hänggi P;2001 Europhys. Lett. 56 22
[44] Hänggi P;2002 ChemPhysChem 3 285
[45] Yilmaz E, Uzuntarla M, Ozer M and Perc M;2013 Physica A 392 5735
[46] Perc M;2005 Phys. Rev. E 72 016207
[47] Sun X J, Perc M, Lu Q S and Kurths J;2008 Chaos 18 023102
[48] Ozer M, Perc M and Uzuntarla M;2009 Europhy. Lett. 86 40008
[49] Sun X J, Lei J Z, Perc M, Lu Q S and Lü S J;2011 Eur. Phys. J. B 79 61
[50] Sun X J, Perc M, Lu Q S and Kurths J;2010 Chaos 20 033116
[51] Perc M;2007 Phys. Rev. E 76 066203
[52] Ozer M, Perc M and Uzuntarla M;2009 Phys. Lett. A 373 964
[53] Ozer M, Perc M, Uzuntarla M and Koklukaya E;2010 Neuroreport 21 338
[54] Ozer M, Uzuntarla M, Perc M and Graham L;2009 J. Theor. Biol. 261 83
[55] Uzun R, Ozer M and Perc M;2014 Europhys. Lett. 105 60002
[56] Uzuntarla M, Uzun R, Yilmaz E, Ozer M and Perc M;2013 Chaos Soliton. Fract. 56 202
[57] Kang X S, Liang X M and Lü H P;2013 Chin. Phys. Lett. 30 018701
[58] Wu Y, Liu S B and Wang R;2013 Acta Phys. Sin. 62 220504 (in Chinese)
[59] Wu X Y, Ma J X and Zhen B;2013 Acta Phys. Sin. 62 240507 (in Chinese)
[60] Song Y L;2014 Chin. Phys. B 23 080504
[61] Neiman A, Schimansky-Geier A, Cornell-Bell A and Moss F;1999 Phys. Rev. Lett. 83 4896
[62] Zhou C S and Kurths J;2003 Chaos 13 401
[63] Perc M;2009 Biophys. Chem. 141 175
[64] Wu Y N, Gong Y B and Wang Q;2014 Eur. Phys. J. B 87 198
[65] Barabási A L and Albert R;1999 Science 286 509
[66] Gong Y B, Xu B, Xu Q, Yang C L, Ren T Q, Hou Z H and Xin H W;2006 Phys. Rev. E 73 046137
[67] Wang Q Y, Lu Q S, Chen G R, Feng and Duan L X;2009 Chaos Soliton. Fract. 39 918
[68] Sun X J and Shi X;2014 Sci. China Tech. Sci. 57 879
[69] Ao X, Hänggi P and Schmid G;2013 Math. Biosci. 245 49
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[8] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[9] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[10] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[11] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[12] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[13] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[14] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[15] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
No Suggested Reading articles found!