INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons |
Wang Bao-Ying (王宝英)a, Gong Yu-Bing (龚玉兵)b |
a Library, Ludong University, Yantai 264025, China; b School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China |
|
|
Abstract We numerically study the effect of the channel noise on the spiking synchronization of a scale-free Hodgkin-Huxley neuron network with time delays. It is found that the time delay can induce synchronization transitions at an intermediate and proper channel noise intensity, and the synchronization transitions become strongest when the channel noise intensity is optimal. The neurons can also exhibit synchronization transitions as the channel noise intensity is varied, and this phenomenon is enhanced at around the time delays that can induce the synchronization transitions. It is also found that the synchronization transitions induced by the channel noise are dependent on the coupling strength and the network average degree, and there is an optimal coupling strength or network average degree with which the synchronization transitions become strongest. These results show that by inducing synchronization transitions, the channel noise has a big regulation effect on the synchronization of the neuronal network. These findings could find potential implications for the information transmission in neural systems.
|
Received: 11 May 2015
Revised: 18 June 2015
Accepted manuscript online:
|
PACS:
|
87.19.lc
|
(Noise in the nervous system)
|
|
87.19.lm
|
(Synchronization in the nervous system)
|
|
87.19.lj
|
(Neuronal network dynamics)
|
|
Fund: Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2012AM013). |
Corresponding Authors:
Gong Yu-Bing
E-mail: gongyubing@ustc.edu
|
Cite this article:
Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵) Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons 2015 Chin. Phys. B 24 118702
|
[1] |
Salvador R, Suckling J, Coleman M R, Pickard J D, Menon D and Bullmore E 2005 Cereb. Cortex 15 1332
|
[2] |
Reijneveld J C, Ponten S C, Berendse H W and Stam C J;2007 Neurophysiology 118 2317
|
[3] |
Stam C J and Reijneveld J C;2007 Nonlin. Biomed. Phys. 1 3
|
[4] |
Honey C J, Kotter R, Breakspear M and Sporns O;2007 Proc. Nat. Acad. Sci. USA 104 10240
|
[5] |
Eguíluz V M, Chialvo D R, Cecchi G A, Baliki M and Apkarian A V;2005 Phys. Rev. Lett. 94 018102
|
[6] |
Kaiser M, Martin R, Andras P and Young M P;2007 Eur. J. Neurosci. 25 3185
|
[7] |
Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S;2008 Phys. Rep. 469 93
|
[8] |
Suykens J A K and Osipov G V;2008 Chaos 18 037101
|
[9] |
Gray C M and Singer W;1989 Proc. Natl. Acad. Sci. USA 86 1698
|
[10] |
Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel H D I, Sejnowski Y J and Laurent G;2001 Neuron 30 553
|
[11] |
Mehta M R, Lee A K and Wilson M A 2001 Nature 417 741
|
[12] |
Levy R, Hutchison W D, Lozano A M and Dostrovsky J O 2000 J. Neurosci. 20 7766
|
[13] |
Mormann F, Kreuz T, Andrzejak R G, David P, Lehnertz K and Elger C E;2003 Epilepsy. Res. 53 173
|
[14] |
Bahar S;2004 Fluct. Noise Lett. 4 L87
|
[15] |
Wang Q Y, Lu Q S and Chen G R;2007 Physica A 374 869
|
[16] |
Yoshioka M;2005 Phys. Rev. E 71 065203R
|
[17] |
Zheng Y H and Lu Q S;2008 Physica A 387 3719
|
[18] |
Hasegawa H;2005 Phys. Rev. E 72 056139
|
[19] |
Wang L, Gong Y B, Xu B and Wu Y N;2013 Sci. China Chem. 56 648
|
[20] |
Wang Q Y, Lu Q S and Chen G R;2007 Europhys. Lett. 77 10004
|
[21] |
Wang Q Y, Murks A, Perc M and Lu Q S;2011 Chin. Phys. B 20 040504
|
[22] |
Dhamala M, Jirsa V K and Ding M Z;2004 Phys. Rev. Lett. 92 074104
|
[23] |
Rossoni E, Chen Y H, Ding M Z and Feng J F;2005 Phys. Rev. E 71 061904
|
[24] |
Roxin A, Brunel N and Hansel D;2005 Phys. Rev. Lett. 94 238103
|
[25] |
Ko T W and Ermentrout G B;2007 Phys. Rev. E 76 056206
|
[26] |
Burić N, Todorović K and Vasović N;2008 Phys. Rev. E 78 036211
|
[27] |
Adhikari B, Prasad A and Dhamala M;2011 Chaos 21 023116
|
[28] |
Sun X J, Yang B H and Wu Y Xiao J H 2014 Acta Phys. Sin. 63 180507 (in Chinese)
|
[29] |
Wang Q Y, Lu Q S and Chen G R;2008 Int. J. Bifurcat. Chaos 18 1189
|
[30] |
Wang Q Y, Duan Z S, Perc M and Chen G R;2008 Europhys. Lett. 83 50008
|
[31] |
Wang Q Y, Perc M, Duan Z S and Chen G R;2009 Phys. Rev. E 80 026206
|
[32] |
Wang Q Y, Perc M, Duan Z S and Chen G R;2010 Physica A 389 3299
|
[33] |
Wang Q Y, Chen G R and Perc M;2011 PLoS One 6 e15851
|
[34] |
Guo D Q, Wang Q Y and Perc M;2012 Phys. Rev. E 85 061905
|
[35] |
Hao Y H, Gong Y B, Wang L, Ma X G and Yang C L;2011 Chaos Soliton. Fract. 44 260
|
[36] |
Xu B, Gong Y B, Wang L and Wu Y N;2013 Nonlin. Dyn. 72 79
|
[37] |
Gong Y B, Lin X, Wang L and Hao Y H;2011 Sci. China Chem. 54 1498
|
[38] |
Sun X J, Lei J Z, Perc M, Kurths J and Chen G R;2011 Chaos 21 016110
|
[39] |
Hu G and Huang X H;2014 Chin. Phys. B 23 108703
|
[40] |
Jia B;2014 Chin. Phys. B 23 050510
|
[41] |
Hodgkin A L and Huxley A F;1952 J. Physiol. 117 500
|
[42] |
Gammaitoni L, Hänggi P, Jung P and Marchesoni F;1998 Rev. Mod. Phys. 70 223
|
[43] |
Schmid G, Goychuk I and Hänggi P;2001 Europhys. Lett. 56 22
|
[44] |
Hänggi P;2002 ChemPhysChem 3 285
|
[45] |
Yilmaz E, Uzuntarla M, Ozer M and Perc M;2013 Physica A 392 5735
|
[46] |
Perc M;2005 Phys. Rev. E 72 016207
|
[47] |
Sun X J, Perc M, Lu Q S and Kurths J;2008 Chaos 18 023102
|
[48] |
Ozer M, Perc M and Uzuntarla M;2009 Europhy. Lett. 86 40008
|
[49] |
Sun X J, Lei J Z, Perc M, Lu Q S and Lü S J;2011 Eur. Phys. J. B 79 61
|
[50] |
Sun X J, Perc M, Lu Q S and Kurths J;2010 Chaos 20 033116
|
[51] |
Perc M;2007 Phys. Rev. E 76 066203
|
[52] |
Ozer M, Perc M and Uzuntarla M;2009 Phys. Lett. A 373 964
|
[53] |
Ozer M, Perc M, Uzuntarla M and Koklukaya E;2010 Neuroreport 21 338
|
[54] |
Ozer M, Uzuntarla M, Perc M and Graham L;2009 J. Theor. Biol. 261 83
|
[55] |
Uzun R, Ozer M and Perc M;2014 Europhys. Lett. 105 60002
|
[56] |
Uzuntarla M, Uzun R, Yilmaz E, Ozer M and Perc M;2013 Chaos Soliton. Fract. 56 202
|
[57] |
Kang X S, Liang X M and Lü H P;2013 Chin. Phys. Lett. 30 018701
|
[58] |
Wu Y, Liu S B and Wang R;2013 Acta Phys. Sin. 62 220504 (in Chinese)
|
[59] |
Wu X Y, Ma J X and Zhen B;2013 Acta Phys. Sin. 62 240507 (in Chinese)
|
[60] |
Song Y L;2014 Chin. Phys. B 23 080504
|
[61] |
Neiman A, Schimansky-Geier A, Cornell-Bell A and Moss F;1999 Phys. Rev. Lett. 83 4896
|
[62] |
Zhou C S and Kurths J;2003 Chaos 13 401
|
[63] |
Perc M;2009 Biophys. Chem. 141 175
|
[64] |
Wu Y N, Gong Y B and Wang Q;2014 Eur. Phys. J. B 87 198
|
[65] |
Barabási A L and Albert R;1999 Science 286 509
|
[66] |
Gong Y B, Xu B, Xu Q, Yang C L, Ren T Q, Hou Z H and Xin H W;2006 Phys. Rev. E 73 046137
|
[67] |
Wang Q Y, Lu Q S, Chen G R, Feng and Duan L X;2009 Chaos Soliton. Fract. 39 918
|
[68] |
Sun X J and Shi X;2014 Sci. China Tech. Sci. 57 879
|
[69] |
Ao X, Hänggi P and Schmid G;2013 Math. Biosci. 245 49
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|