INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
In situ calibrating optical tweezers with sinusoidal-wave drag force method |
Li Di (李迪)a, Zhou Jin-Hua (周金华)a, Hu Xin-Yao (呼新尧)a, Zhong Min-Cheng (钟敏成)a, Gong Lei (龚雷)a, Wang Zi-Qiang (王自强)a, Wang Hao-Wei (王浩威)a, Li Yin-Mei (李银妹)a b |
a Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China; b Hefei National Laboratory for Physical Sciences at the Microscale, Hefei 230026, China |
|
|
Abstract We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical analysis and experimental result demonstrate that the correction of SDFM is necessary, especially the error of no correction is up to 11.25% for a bead of 5 μm in diameter. Second, the simulation results demonstrate that the SDFM has a better performance in the calibration of optical tweezers than the triangular-wave drag force method (TDFM) and power spectrum density method (PSDM) at the same signal-to-noise ratio or trapping stiffness. Third, in experiments, the experimental standard deviations of calibration of trapping stiffness and CF with the SDFM are about less than 50% of TDFM and PSDM especially at low laser power. Finally, the experiments of stretching DNA verify that the in situ calibration with the SDFM improves the measurement stability and accuracy.
|
Received: 30 April 2015
Revised: 15 June 2015
Accepted manuscript online:
|
PACS:
|
87.80.Cc
|
(Optical trapping)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
87.14.gk
|
(DNA)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11302220, 11374292, and 31100555) and the National Basic Research Program of China (Grant No. 2011CB910402). |
Corresponding Authors:
Li Yin-Mei
E-mail: liyinmei@ustc.edu.cn
|
Cite this article:
Li Di (李迪), Zhou Jin-Hua (周金华), Hu Xin-Yao (呼新尧), Zhong Min-Cheng (钟敏成), Gong Lei (龚雷), Wang Zi-Qiang (王自强), Wang Hao-Wei (王浩威), Li Yin-Mei (李银妹) In situ calibrating optical tweezers with sinusoidal-wave drag force method 2015 Chin. Phys. B 24 118703
|
[1] Moffitt J R, Chemla Y R, Smith S B and Bustamante C;2008 Recent Advances in Optical Tweezers (Palo Alto: Annual Reviews) p. 205 [2] Guo H, Qu E, Xu C, Li Z, Cheng B and Zhang D 2007 Physics 36 476 [3] Xu C H, Guo H L, Qu E, Li Z L, Yuan M, Cheng B Y and Zhang D Z 2007 Chin. Phys. Lett. 24 2714 [4] Xia P, Zhou J H, Song X Y, Wu B, Liu X, Li D, Zhang S Y, Wang Z K, Yu H J, Ward T, Zhang J C, Li Y M, Wang X N, Chen Y, Guo Z and Yao X B;2014 J. Mol. Cell Biol. 6 240 [5] Zhong M C, Wei X B, Zhou J H, Wang Z Q and Li Y M;2013 Nat. Commun. 4 1768 [6] Zhong M C, Gong L, Zhou J H, Wang Z Q and Li Y M;2013 Opt. Lett. 38 5134 [7] Zhong M C, Gong L, Li D, Zhou J H, Wang Z Q and Li Y M;2014 Appl. Phys. Lett. 105 181112 [8] Bishop A I, Nieminen T A, Heckenberg N R and Rubinsztein-Dunlop H;2004 Phys. Rev. Lett. 92 198104 [9] Shen G, Xue G, Cai J, Zou G, Li Y and Zhang Q;2013 Soft Matter 9 2512 [10] Xue G, Chen K, Shen G, Wang Z, Zhang Q, Cai J and Li Y;2013 Colloid. Surf. A 436 1007 [11] Ling L, Guo H L, Huang L, Qu E, Li Z L and Li Z Y;2012 Chin. Phys. Lett. 29 [12] Berg-Sorensen K and Flyvbjerg H;2004 Rev. Sci. Instrum. 75 594 [13] Wang Z Q, Zhou J H, Zhong M C, Li D and Li Y M;2014 Opt. Express 22 16956 [14] Li X C and Sun X D 2010 Chin. Phys. B 19 119401 [15] Visscher K, Gross S P and Block S M 1996 IEEE J. Sel. Top. Quantum Electron. 2 1066 [16] Gittes F and Schmidt C F;1998 Opt. Lett. 23 7 [17] Hajizadeh F, Mousavi S M, Khaksar Z S and Reihani S N S;2014 J. Opt. 16 105706 [18] Svoboda K, Schmidt C F, Schnapp B J and Block S M;1993 Nature 365 721 [19] Ghislain L P, Switz N A and Webb W W;1994 Rev. Sci. Instrum. 65 2762 [20] Capitanio M, Romano G, Ballerini R, Giuntini M, Pavone F, Dunlap D and Finzi L;2002 Rev. Sci. Instrum. 73 1687 [21] Svoboda K and Block S M;1994 Annu. Rev. Biophys. Biomol. Struct. 23 247 [22] Wang M D, Yin H, Landick R, Gelles J and Block S M;1997 Biophys. J. 72 1335 [23] Tolić-Norrelykke S F, Schaffer E, Howard J, Pavone F S, Julicher F and Flyvbjerg H;2006 Rev. Sci. Instrum. 77 103101 [24] Valentine M T, Dewalt L E and Ou-Yang H D;1996 J. Phys.: Condens. Matter 8 9477 [25] Wei M T, Zaorski A, Yalcin H C, Wang J, Hallow M, Ghadiali S N, Chiou A and Ou-Yang H D;2008 Opt. Express 16 8594 [26] Bechhoefer J and Wilson S;2002 Am. J. Phys. 70 393 [27] Wang Z Q, Zhong M C, Zhou J H and Li Y M;2013 Acta Phys. Sin. 62 188701 (in Chinese) [28] Czerwinski F, Richardson A C and Oddershede L B;2009 Opt. Express 17 13255 [29] Allersma M W, Gittes F, Decastro M J, Stewart R J and Schmidt C F;1998 Biophys. J. 74 1074 [30] Pralle A, Prummer M, Florin E L, Stelzer E H K and Horber J K H;1999 Microsc. Res. Technol. 44 378 [31] Kheifets S, Simha A, Melin K, Li T C and Raizen M G;2014 Science 343 1493 [32] Gong Z, Wang Z, Li Y M, Lou L R and Xu S H;2007 Opt. Commun. 273 37 [33] Salomo M, Kegler K, Gutsche C, Struhalla M, Reinmuth J, Skokow W, Hahn U and Kremer F;2006 Colloid. Polym. Sci. 284 1325 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|