Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 114206    DOI: 10.1088/1674-1056/24/11/114206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Role of the aperture in Z-scan experiments: A parametric study

M. R. Rashidian Vaziri
Laser and Optics Research School, NSTRI, Tehran, Iran
Abstract  In close-aperture Z-scan experiments, a small aperture is conventionally located in the far-field thereby enabling the detection of slight changes in the laser beam profile due to the Kerr-lensing effect. In this work, by numerically solving the Fresnel-Kirchhoff diffraction integrals, the amount of transmitted power through apertures has been evaluated and a parametric study on the role of the various parameters that can influence this transmitted power has been done. In order to perform a comprehensive analysis, we have used a nonlinear phase shift optimized for nonlocal nonlinear media in our calculations. Our results show that apertures will result in the formation of symmetrical fluctuations on the wings of Z-scan transmittance curves. It is further shown that the appearance of these fluctuations can be ascribed to the natural diffraction of the Gaussian beam as it propagates up to the aperture plane. Our calculations reveal that the nonlocal parameter variations can shift the position of fluctuations along the optical axis, whereas their magnitude depends on the largeness of the induced nonlinear phase shift. It is concluded that since the mentioned fluctuations are produced by the natural diffraction of the Gaussian beam itself, one must take care not to mistakenly interpret them as noise and should not expect to eliminate them from experimental Z-scan transmittance curves by using apertures with different sizes.
Keywords:  nonlinear optics      Kerr effect      Z-scan      electromagnetic wave propagation  
Received:  14 March 2015      Revised:  25 May 2015      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Corresponding Authors:  M. R. Rashidian Vaziri     E-mail:  rezaeerv@gmail.com

Cite this article: 

M. R. Rashidian Vaziri Role of the aperture in Z-scan experiments: A parametric study 2015 Chin. Phys. B 24 114206

[1] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and van Stryland E W;1990 IEEE J. Quantum Electron. 26 760
[2] Weaire D, Wherrett B S, Miller D A B and Smith S D;1979 Opt. Lett. 4 331
[3] Rashidian Vaziri M R, Hajiesmaeilbaigi F and Maleki M H;2013 J. Opt. 15 025201
[4] Rashidian Vaziri M R;2013 Appl. Opt. 52 4843
[5] Kwak C H, Lee Y L and Kim S G;1999 J. Opt. Soc. Am. B 16 600
[6] Yao B L, Ren L Y and Hou X;2003 J. Opt. Soc. Am. B 20 1290
[7] Chapple P B, Staromlynska J, Hermann J A, Mckay T J and McDuff R G;1997 Int. J. Nonlinear Opt. Phys. 6 251
[8] Rashidian Vaziri M R;2014 Opt. Commun.
[9] Garcia R E V, Arroyo C M L, Mendez O M M, Reynoso L E, Chavez-Cerda S and Iturbe C M D;2011 J. Opt. 13 085203
[10] Ramirez E V G, Carrasco M L A, Otero M M M, Cerda S C and Castillo M D I;2010 Opt. Express 18 22067
[11] Rashidian Vaziri M R;2014 Laser Phys. 23 105401
[12] Deng L, He K, Zhou T and Li C;2005 J. Opt. A: Pure Appl. Opt. 7 409
[13] Rashidian Vaziri M R, Hajiesmaeilbaigi F and Maleki M H;2013 J. Opt. 15 035202
[14] Nascimento C M, Alencar M A R C, Chávez-Cerda S, da Silva M G A, Meneghetti M R and Hickmann J M;2006 J. Opt. A: Pure Appl. Opt. 8 947
[15] Chen S, Liu Z, Zang W, Tian J, Zhou W, Song F and Zhang C;2005 J. Opt. Soc. Am. B 22 1911
[16] Divya S, Nampoori V P N, Radhakrishnan P and Mujeeb A;2014 Chin. Phys. B 23 084203
[17] Henari F Z and Dakhel A A;2008 J. Appl. Phys. 104 033110
[18] Wang K, Long H, Fu M, Yang G and Lu P X;2010 Chin. Phys. Lett. 27 4204
[19] Zeng Y, Pan Z H, Zhao F L, Qin M, Zhou Y and Wang C S;2014 Chin. Phys. B 23 024212
[20] Dakhel A A and Henari F Z;2003 Cryst. Res. Technol. 38 979
[21] Kiran P P, Bhaktha B N S and Rao D N;2004 Appl. Phys. 96 6717
[22] Pálfalvi L, Tóth B C, Almási G, Fülöp J A and Hebling J;2009 Appl. Phys. B 97 679
[23] Lucchetti L, Suchand S and Simoni F;2009 J. Opt. A: Pure Appl. Opt. 11 034002
[24] Hassan Q M, Badran H A, AL-Ahmad A Y and Emshary C A;2013 Chin. Phys. B 22 114209
[25] Farmanfarmaei B, Rashidian Vaziri M R and Hajiesmaeilbaigi F;2014 Quantum Electron. 44 1029
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[6] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[7] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[8] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[9] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[10] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[11] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[12] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[13] A review of some new perspectives on the theory of superconducting Sr2RuO4
Wen Huang(黄文). Chin. Phys. B, 2021, 30(10): 107403.
[14] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[15] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
No Suggested Reading articles found!