|
|
Passive decoy-state quantum key distribution using weak coherent pulses with modulator attenuation |
Li Yuan (李源)a b, Bao Wan-Su (鲍皖苏)a b, Li Hong-Wei (李宏伟)b, Zhou Chun (周淳)a b, Wang Yang (汪洋)a b |
a Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China; b Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Passive decoy-state quantum key distribution is more desirable than the active one in some scenarios. It is also affected by the imperfections of the devices. In this paper, the influence of modulator attenuation on the passive decoy-state method is considered. We introduce and analyze the unbalanced Mach-Zehnder interferometer, briefly, and combining with the virtual source and imaginary unitary transformation, we characterize the passive decoy-state method using a weak coherent photon source with modulator attenuation. According to the attenuation parameter δ, the pass efficiencies are given. Then, the key generation rate can be acquired. From numerical simulations, it can be seen that modulator attenuation has a non-negligible influence on the performance of passive-state QKD protocol. Based on the research, the analysis method of virtual source and imaginary unitary transformation are preferred in analyzing passive decoy state protocol, and the passive decoy-state method is better than the active one and is close to the active vacuum + weak decoy state under the condition of having the same modulator attenuation.
|
Received: 17 March 2015
Revised: 07 August 2015
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304397). |
Corresponding Authors:
Bao Wan-Su
E-mail: 2010thzz@sina.com
|
Cite this article:
Li Yuan (李源), Bao Wan-Su (鲍皖苏), Li Hong-Wei (李宏伟), Zhou Chun (周淳), Wang Yang (汪洋) Passive decoy-state quantum key distribution using weak coherent pulses with modulator attenuation 2015 Chin. Phys. B 24 110307
|
[1] |
Bennett C H and Brassard G 1984 IEEE Int. Conf. on Computers, Systems, and Signal Processing (New York: IEEE) pp. 175-179
|
[2] |
Ekert A K;1991 Phys. Rev. Lett. 67 661
|
[3] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) Chaps. 2 and 12
|
[4] |
Lo H K and Chau H F 1990 Science 283 2050
|
[5] |
Shor P and Preskill J;2000 Phys. Rev. Lett. 85 441
|
[6] |
Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
|
[7] |
Wang S, Chen W, Guo J F and Yin Z Q;2012 Opt. Lett. 37 1008
|
[8] |
Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E;2013 Nat. Photonics 7 378
|
[9] |
Wang J Y;2013 Nat. Photonics 7 387
|
[10] |
Zhao L Y, Li H W, Yin Z Q, Chen W, You J and Han Z F;2014 Chin. Phys. B 23 100304
|
[11] |
Li M, Treeviriyanupab P, Zhang C M, Yin Z Q, Chen W and Han Z F;2015 Chin. Phys. B 24 010302
|
[12] |
Lo H K and Chau H F 1999 Science 283 5410
|
[13] |
Renner R 2005 Security of Quantum Key Distribution (PhD thesis) quant-ph/0512258
|
[14] |
Horodecki K, Horodecki M, Horodecki P, Leung D and Oppenheim J;2008 IEEE Transactions on Information Theory 54 2604
|
[15] |
Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lütkenhaus N and Peev M;2009 Rev. Mod. Phys. 81 1301
|
[16] |
Hwang W Y;2003 Phys. Rev. Lett. 91 057901
|
[17] |
Lo H K, Ma X and Chen K;2005 Phys. Rev. Lett. 94 230504
|
[18] |
Wang X B;2005 Phys. Rev. Lett. 94 230503
|
[19] |
Wang X B;2005 Phys. Rev. A 72 012322
|
[20] |
Ma X, Qi B, Zhao Y and Lo H K;2005 Phys. Rev. A 72 012326
|
[21] |
Acin A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V;2007 Phys. Rev. Lett. 98 230501
|
[22] |
Gisin N, Pironio S and Sangouard N;2010 Phys. Rev. Lett. 105 070501
|
[23] |
Pawlowski M and Brunner N;2011 Phys. Rev. A 84 010302
|
[24] |
Braunstein S L and Pirandola S;2012 Phys. Rev. Lett. 108 130502
|
[25] |
Lo H K, Curty M and Qi B;2012 Phys. Rev. Lett. 108 130503
|
[26] |
Tamaki K, Lo H K, Fung C H F and Qi B;2012 Phys. Rev. A 85 042307
|
[27] |
Ma X F and Razavi M;2012 Phys. Rev. A 86 062319
|
[28] |
Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y and Han Z F;2013 Phys. Rev. A 88 052333
|
[29] |
Li F Y, Yin Z Q, Li H W, Chen W, Wang S, Wen H, Zhao Y B and Han Z F;2014 Chin. Phys. Lett. 31 070302
|
[30] |
Dong C, Zhao S H, Zhang N, Dong Y, Zhao W H and Liu Y;2014 Acta Phys. Sin. 63 200304 (in Chinese)
|
[31] |
Dong C, Zhao S H, Dong Y, Zhao W H and Zhao J 2014 Acta Phys.Sin. 63 170303 (in Chinese)
|
[32] |
Mauerer W and Silberhorn C 2007 Phys. Rev. A 75 050305(R)
|
[33] |
Adachi Y, Yamamoto T, Koashi M and Imoto N;2007 Phys. Rev. Lett. 99 180503
|
[34] |
Bennett C H;1992 Phys. Rev. Lett. 68 3121
|
[35] |
Mo X F, Zhu B, Han Z F, Gui Y Z and Guo G C;2005 Opt. Lett. 30 2632
|
[36] |
Han Z F, Mo X F, Gui Y Z and Guo G C;2005 Appl. Phys. Lett. 86 221103
|
[37] |
Li H W, Yin Z Q, Han Z F, Bao W S and Guo G C 2010 Quantum Inf. Comput. 10 0771
|
[38] |
Ferenczi A, Narasimhachar V and Lütkenhaus N;2012 Phys. Rev. A 86 042327
|
[39] |
Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J A 1992 J. Cryptol. 5 3
|
[40] |
Huttner B, Imoto N, Gisin N and Mor T;1995 Phys. Rev. A 51 1863
|
[41] |
Brassard G, Lütkenhaus N, Mor T and Sanders B C;2000 Phys. Rev. Lett. 85 1330
|
[42] |
Curty M, Morder T, Ma X and Lutkenhaus N;2009 Opt. Lett. 34 3238
|
[43] |
Brassard G and Salvail L 1993 Proceedings of Advances in Cryptology-EUROCRYPT’93, Lofthus, Norway, m 1993, Lecture Notes in Computer Science (New York: Springer) p. 410
|
[44] |
Ma X and Lo H K;2008 New J. Phys. 10 073018
|
[45] |
Curty M, Ma X, Qi B and Moroder T;2010 Phys. Rev. A 81 022310
|
[46] |
Arfken G 1985 Mathematical Mehthods for Physicists (3rd edn.) (New York: Academic)
|
[47] |
Gobby C, Yuan Z L and Shields A J;2004 Appl. Phys. Lett. 84 3762
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|