Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110308    DOI: 10.1088/1674-1056/24/11/110308
GENERAL Prev   Next  

Efficient schemes of joint remote preparation with a passive receiver via EPR pairs

Ma Song-Ya (马松雅)a, Gao Cong (高聪)a, Luo Ming-Xing (罗明星)b
a School of Mathematics and Statistics, Henan University, Kaifeng 475004, China;
b Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu 610031, China
Abstract  Novel schemes are put forward to execute the joint remote preparation of an arbitrary two-qubit state with a passive receiver via EPR pairs as the entangled channel. Compared with the previous protocols, the required multi-particle measurement is simplified and the classical communication cost is reduced. When the number of senders increases, the advantage is more evident. It means that the proposed schemes are more efficient in practice.
Keywords:  joint remote preparation      EPR pair      measurement basis      quantum network communication  
Received:  27 April 2015      Revised:  16 June 2015      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201253, 61303039, 61572246, and 61502147) and the Fundamental Research Fund for the Central Universities of China (Grant No. 2682014CX095).
Corresponding Authors:  Ma Song-Ya     E-mail:  masongya0829@126.com

Cite this article: 

Ma Song-Ya (马松雅), Gao Cong (高聪), Luo Ming-Xing (罗明星) Efficient schemes of joint remote preparation with a passive receiver via EPR pairs 2015 Chin. Phys. B 24 110308

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K;1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfuter H and Zeilinger A 1997 Nature 575 390
[3] Furusawa A;1998 Science 282 706
[4] Riebe M, Haffner H, Roos C F, Hansel W, Benhelm J, Lancaster G P T, Korber T W, Becher C, Schmidt-Kaler F, James D F V and Blatt R;2004 Nature 429 734
[5] Chen X B, Wen Q Y, Xu G, Yang Y X and Zhu F C;2009 Phys. Rev. A 79 036301
[6] Lo H K;2000 Phys. Rev. A 62 012313
[7] Pati A K 2001 Phys. Rev. A 63 014302
[8] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K;2001 Phys. Rev. Lett. 87 077902
[9] Xiang G Y, Li J, Yu B and Guo G C;2005 Phys. Rev. A 72 012315
[10] Kurucz Z, Adam P, Kis Z and Janszky J;2005 Phys. Rev. A 72 052315
[11] Devetak I and Berger T;2001 Phys. Rev. Lett. 87 197901
[12] Berry D W and Sanders B C;2003 Phys. Rev. Lett. 90 057901
[13] Luo M X, Chen X B, Ma S Y, Yang Y X and Hu Z M;2010 J. Phys. B: At. Mol. Opt. Phys. 43 065501
[14] Ma S Y, Chen X B, Luo M X, Zhang R and Yang Y X;2011 Opt. Commun. 284 4088
[15] Ma S Y, Luo M X, Chen X B and Yang Y X;2014 Quant. Inf. Process. 13 1951
[16] Ma S Y and Luo M X;2014 Chin. Phys. B 23 090308
[17] Peng X H, Zhu X W, Fang X M, Feng M, Liu M L and Gao K L;2003 Phys. Lett. A 306 271
[18] Barreiro J T, Wei T C and Kwiat P G;2010 Phys. Rev. Lett. 105 030407
[19] Hillery M, Buzek V and Bertaiume A;1999 Phys. Rev. A 59 1829
[20] Xia Y, Song J and Song H S;2007 J. Phys. B: At. Mol. Opt. Phys. 40 3719
[21] An N B and Kim J;2008 J. Phys. B: At. Mol. Opt. Phys. 41 095501
[22] Luo M X, Chen X B, Ma S Y, Niu X X and Yang Y X;2010 Opt. Commun. 283 4796
[23] An N B;2010 Opt. Commun. 283 4113
[24] Chen Q Q, Xia Y and An N B;2011 Opt. Commun. 284 2617
[25] Su Y, Chen X B and Yang Y X;2012 Int. J. Quant. Inform. 10 1250006
[26] Zhang Z H, Shu L, Mo Z W, Zheng J, Ma S Y and Luo M X;2014 Quant. Inform. Process. 13 1979
[27] Choudhury B S and Dhara A;2015 Quant. Inform. Process. 14 373
[28] An N B;2009 J. Phys. B: At. Mol. Opt. Phys. 42 125501
[29] Xiao X Q, Liu J M and Zeng G H;2011 J. Phys. B: At. Mol. Opt. Phys. 44 075501
[30] An N B, Bich C T and Don N V;2011 Phys. Lett. A 375 3570
[31] Chen Q Q, Xia Y and Song J;2012 J. Phys. A: Math. Theor. 45 055303
[32] Jiang M and Dong D Y;2012 J. Phys. B: At. Mol. Opt. Phys. 45 205506
[33] Xia Y, Chen Q Q and An N B;2012 J. Phys. A: Math. Theor. 45 335306
[34] Chen Q Q, Xia Y and An N B;2013 Phys. Scr. 87 025005
[35] Wang Y and Ji X;2013 Chin. Phys. B 22 020306
[36] Chen Z F, Liu J M and Ma L;2014 Chin. Phys. B 23 020312
[1] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[2] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
[3] Efficient remote preparation of arbitrary two-and three-qubit states via the χ state
Ma Song-Ya (马松雅), Luo Ming-Xing (罗明星). Chin. Phys. B, 2014, 23(9): 090308.
[4] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan (王媛), Ji Xin (计新). Chin. Phys. B, 2013, 22(2): 020306.
[5] Probabilistic joint remote preparation of a high-dimensional equatorial quantum state
Zhan You-Bang(詹佑邦),Zhang Qun-Yong(张群永), and Shi Jin(施锦). Chin. Phys. B, 2010, 19(8): 080310.
[6] Proposal of many-party controlled teleportation for multi-qubit entangled W state
Huang Zhi-Ping (黄志平), Li Hong -Cai (李洪才). Chin. Phys. B, 2005, 14(5): 974-979.
No Suggested Reading articles found!