Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107101    DOI: 10.1088/1674-1056/24/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon-clathrate compound under high pressure

Zhang Wei (张伟)a d, Chen Qing-Yun (陈青云)b, Zeng Zhao-Yi (曾召益)c, Cai Ling-Cang (蔡灵仓)d
a School of Science, Southwest University of Science and Technology, Mianyang 610064, China;
b School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 610064, China;
c College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China;
d Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China
Abstract  We calculated the structural, elastic, and electronic properties of alkali metal Na atoms doped type-I silicon-clathrate compound (Na8Si46) under pressure using first-principles methods. The obtained dependencies of bond lengths and bond angles on pressure show heterogeneous behaviors which may bring out a structural transition. By using the elastic stability criteria from the calculated elastic constants, we confirm that the Na8Si46 is elastically unstable under high pressure. Some of the mechanical and thermal quantities include bulk modulus, shear modulus ,Young's modulus, Debye temperature, sound velocity, melting point, and hardness, which are also derived from the elastic constants. The calculated total and partial electron densities of states of Na8Si46 indicate a weak interaction between the encapsulated Na atoms and the silicon framework. Moreover, the effect of pressure on its electronic structure is also investigated, which suggests that pressure is not a good choice to enhance the thermoelectricity performance of Na8Si46.
Keywords:  clathrate compound      elastic constants      electronic structure      density functional theory  
Received:  18 March 2015      Revised:  25 May 2015      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  82.75.-z (Molecular sieves, zeolites, clathrates, and other complex solids)  
  62.20.dq (Other elastic constants)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 11347134 and 11304254) and the Doctor Foundation of Southwest University of Science and Technology, China (Grant No. 13zx7125).
Corresponding Authors:  Zhang Wei     E-mail:  zwphys@gmail.com

Cite this article: 

Zhang Wei (张伟), Chen Qing-Yun (陈青云), Zeng Zhao-Yi (曾召益), Cai Ling-Cang (蔡灵仓) Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon-clathrate compound under high pressure 2015 Chin. Phys. B 24 107101

[1] Cros C, Pouchard M and Hagenmuller P 1965 C R. Acad. Sci. 260 4764
[2] Kasper J S, Hagenmuller P and Pouchard M 1965 Science 150 1713
[3] Kawaji H, Horie H, Yamanaka S and Ishikawa M 1995 Phys. Rev. Lett. 74 1427
[4] Herrmann R F W, Tanigaki K, Kuroshima S and Suematsu H 1998 Chem. Phys. Lett. 283 29
[5] Nolas G S, Cohn J L, Slack G A and Schujman S B 1998 Appl. Phys. Lett. 73 178
[6] Menon M, Richter E and Subbaswamy K 1997 Phys. Rev. B 56 12290
[7] Slack G A 1997 Mater. Res. Soc. Symp. Proc. 478 47
[8] Martin J, Wang H and Nolas G S 2008 Appl. Phys. Lett. 92 222110
[9] Beekman M and Nolas G S 2008 J. Mater. Chem. 18 842
[10] Yamanaka S, Enishi E, Fukuoka H and Yasukawa M 2000 Inorg. Chem. 39 56
[11] Toulemonde P, Adessi C, Blase X, San Miguel A and Tholence J L 2005 Phys. Rev. B 71 094504
[12] Viennois R, Toulemonde P, Paulsen C and San Miguel A 2005 J. Phys.: Condens. Matter 17 L311
[13] Kurakevych O O, Strobel T A, Kim D Y, Muramatsu T and Struzhkin V V 2013 Cryst. Growth Des. 13 303
[14] Stefanoski S, Blosser M C and Nolas G S 2013 Cryst. Growth Des. 13 195
[15] Toulemonde P, Machon D, San Miguel A and Amboage M 2011 Phys. Rev. B 83 134110
[16] San Miguel A, Mélinon P, Connétable D, Blase X, Tournus F, Reny E, Yamanaka S and Itié J P 2002 Phys. Rev. B 65 054109
[17] Stefanoski S, Martin J and Nolas G S 2010 J. Phys.: Condens. Matter 22 485404
[18] Qiu L, White M, Li Z, Tse J, Ratcliffe C, Tulk C, Dong J and Sankey O 2001 Phys. Rev. B 64 024303
[19] Kurganski S I, Borshch N A and Pereslavtseva N S 2005 Semiconductors 39 1176
[20] Moriguchi K, Yonemura M, Shintani A and Yamanaka S 2000 Phys. Rev. B 61 9859
[21] Vanderbilt D 1990 Phys. Rev. B 41 7892
[22] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 2100
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196
[25] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[26] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[27] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[28] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
[29] Karki B B, Stixrude L, Clark S J, Warren M C and Ackland G J 1997 J. Crain. Am. Mineral. 82 51
[30] Wentzcovitch R M, Ross N L and Price G D 1995 Phys. Earth Planet. Inter. 90 101
[31] Perottoni C A and da Jornada J A H 2001 J. Phys.: Condens. Matter 13 5981
[32] Connétable D 2010 Phys. Rev. B 82 075209
[33] Kume T, Koda T, Sasaki S, Shimizu H and Tse J 2004 Phys. Rev. B 70 052101
[34] Machon D, Toulemonde P, McMillan P, Amboage M, Muñoz A, Hernández P Rodríguez and San Miguel A 2009 Phys. Rev. B 79 184101
[35] Tse J S, Desgreniers S, Li Z Q, Ferguson M R and Kawazoe Y 2002 Phys. Rev. Lett. 89 195507
[36] Fine M E, Brown L D and Marcus H L 1984 Scr. Metall. 18 951
[37] Miranda C R and Antonelli A 2006 Phys. Rev. B 74 153203
[38] McMillan P F 2002 Nat. Mater. 1 19
[39] Wong J, Krisch M, Farber D L, Occelli F, Xu R, Chiang T C, Clatterbuck D, Schwartz A J, Wall M and Boro C 2005 Phys. Rev. B 72 064115
[40] Hill R 1952 Proc. Soc. Lond. A 65 350
[41] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[42] San Miguel A and Toulemonde P 2005 High Pressure Res. 25 159
[43] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook(Kiev: Naukova Dumka) pp. 60-61
[44] Pugh S F 1954 Philos. Mag. Ser.7 823
[45] Nolas George S 2014 The Physics and Chemistry of Inorganic Clathrates (Dordrecht: Springer Science+Business Media) p. 296
[46] San Miguel A, Mélinon P, Blase X, Tournusa F, Connetablea D, Renyb E, Yamanakab S, Itiéc J P, Crosd C and Pouchard M 2002 High Pressure Res. 22 539
[47] Connétable D, Timoshevskii V, Artacho E and Blase X 2001 Phys. Rev. Lett. 87 206405
[48] Nolas G S, Ward J M, Gryko J, Qiu L and White M A 2001 Phys. Rev. B 64 153201
[49] Sinko G V and Smirnow N A 2002 J. Phys.: Condens. Matter 14 6989
[50] Koelling D D and Arbman G O 1975 J. Phys. F: Met. Phys. 5 2041
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[15] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
No Suggested Reading articles found!