CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon-clathrate compound under high pressure |
Zhang Wei (张伟)a d, Chen Qing-Yun (陈青云)b, Zeng Zhao-Yi (曾召益)c, Cai Ling-Cang (蔡灵仓)d |
a School of Science, Southwest University of Science and Technology, Mianyang 610064, China; b School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 610064, China; c College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China; d Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract We calculated the structural, elastic, and electronic properties of alkali metal Na atoms doped type-I silicon-clathrate compound (Na8Si46) under pressure using first-principles methods. The obtained dependencies of bond lengths and bond angles on pressure show heterogeneous behaviors which may bring out a structural transition. By using the elastic stability criteria from the calculated elastic constants, we confirm that the Na8Si46 is elastically unstable under high pressure. Some of the mechanical and thermal quantities include bulk modulus, shear modulus ,Young's modulus, Debye temperature, sound velocity, melting point, and hardness, which are also derived from the elastic constants. The calculated total and partial electron densities of states of Na8Si46 indicate a weak interaction between the encapsulated Na atoms and the silicon framework. Moreover, the effect of pressure on its electronic structure is also investigated, which suggests that pressure is not a good choice to enhance the thermoelectricity performance of Na8Si46.
|
Received: 18 March 2015
Revised: 25 May 2015
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
82.75.-z
|
(Molecular sieves, zeolites, clathrates, and other complex solids)
|
|
62.20.dq
|
(Other elastic constants)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 11347134 and 11304254) and the Doctor Foundation of Southwest University of Science and Technology, China (Grant No. 13zx7125). |
Corresponding Authors:
Zhang Wei
E-mail: zwphys@gmail.com
|
Cite this article:
Zhang Wei (张伟), Chen Qing-Yun (陈青云), Zeng Zhao-Yi (曾召益), Cai Ling-Cang (蔡灵仓) Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon-clathrate compound under high pressure 2015 Chin. Phys. B 24 107101
|
[1] |
Cros C, Pouchard M and Hagenmuller P 1965 C R. Acad. Sci. 260 4764
|
[2] |
Kasper J S, Hagenmuller P and Pouchard M 1965 Science 150 1713
|
[3] |
Kawaji H, Horie H, Yamanaka S and Ishikawa M 1995 Phys. Rev. Lett. 74 1427
|
[4] |
Herrmann R F W, Tanigaki K, Kuroshima S and Suematsu H 1998 Chem. Phys. Lett. 283 29
|
[5] |
Nolas G S, Cohn J L, Slack G A and Schujman S B 1998 Appl. Phys. Lett. 73 178
|
[6] |
Menon M, Richter E and Subbaswamy K 1997 Phys. Rev. B 56 12290
|
[7] |
Slack G A 1997 Mater. Res. Soc. Symp. Proc. 478 47
|
[8] |
Martin J, Wang H and Nolas G S 2008 Appl. Phys. Lett. 92 222110
|
[9] |
Beekman M and Nolas G S 2008 J. Mater. Chem. 18 842
|
[10] |
Yamanaka S, Enishi E, Fukuoka H and Yasukawa M 2000 Inorg. Chem. 39 56
|
[11] |
Toulemonde P, Adessi C, Blase X, San Miguel A and Tholence J L 2005 Phys. Rev. B 71 094504
|
[12] |
Viennois R, Toulemonde P, Paulsen C and San Miguel A 2005 J. Phys.: Condens. Matter 17 L311
|
[13] |
Kurakevych O O, Strobel T A, Kim D Y, Muramatsu T and Struzhkin V V 2013 Cryst. Growth Des. 13 303
|
[14] |
Stefanoski S, Blosser M C and Nolas G S 2013 Cryst. Growth Des. 13 195
|
[15] |
Toulemonde P, Machon D, San Miguel A and Amboage M 2011 Phys. Rev. B 83 134110
|
[16] |
San Miguel A, Mélinon P, Connétable D, Blase X, Tournus F, Reny E, Yamanaka S and Itié J P 2002 Phys. Rev. B 65 054109
|
[17] |
Stefanoski S, Martin J and Nolas G S 2010 J. Phys.: Condens. Matter 22 485404
|
[18] |
Qiu L, White M, Li Z, Tse J, Ratcliffe C, Tulk C, Dong J and Sankey O 2001 Phys. Rev. B 64 024303
|
[19] |
Kurganski S I, Borshch N A and Pereslavtseva N S 2005 Semiconductors 39 1176
|
[20] |
Moriguchi K, Yonemura M, Shintani A and Yamanaka S 2000 Phys. Rev. B 61 9859
|
[21] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[22] |
Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 2100
|
[23] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[24] |
Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196
|
[25] |
Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
|
[26] |
Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
|
[27] |
Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
|
[28] |
Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
|
[29] |
Karki B B, Stixrude L, Clark S J, Warren M C and Ackland G J 1997 J. Crain. Am. Mineral. 82 51
|
[30] |
Wentzcovitch R M, Ross N L and Price G D 1995 Phys. Earth Planet. Inter. 90 101
|
[31] |
Perottoni C A and da Jornada J A H 2001 J. Phys.: Condens. Matter 13 5981
|
[32] |
Connétable D 2010 Phys. Rev. B 82 075209
|
[33] |
Kume T, Koda T, Sasaki S, Shimizu H and Tse J 2004 Phys. Rev. B 70 052101
|
[34] |
Machon D, Toulemonde P, McMillan P, Amboage M, Muñoz A, Hernández P Rodríguez and San Miguel A 2009 Phys. Rev. B 79 184101
|
[35] |
Tse J S, Desgreniers S, Li Z Q, Ferguson M R and Kawazoe Y 2002 Phys. Rev. Lett. 89 195507
|
[36] |
Fine M E, Brown L D and Marcus H L 1984 Scr. Metall. 18 951
|
[37] |
Miranda C R and Antonelli A 2006 Phys. Rev. B 74 153203
|
[38] |
McMillan P F 2002 Nat. Mater. 1 19
|
[39] |
Wong J, Krisch M, Farber D L, Occelli F, Xu R, Chiang T C, Clatterbuck D, Schwartz A J, Wall M and Boro C 2005 Phys. Rev. B 72 064115
|
[40] |
Hill R 1952 Proc. Soc. Lond. A 65 350
|
[41] |
Anderson O L 1963 J. Phys. Chem. Solids 24 909
|
[42] |
San Miguel A and Toulemonde P 2005 High Pressure Res. 25 159
|
[43] |
Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook(Kiev: Naukova Dumka) pp. 60-61
|
[44] |
Pugh S F 1954 Philos. Mag. Ser.7 823
|
[45] |
Nolas George S 2014 The Physics and Chemistry of Inorganic Clathrates (Dordrecht: Springer Science+Business Media) p. 296
|
[46] |
San Miguel A, Mélinon P, Blase X, Tournusa F, Connetablea D, Renyb E, Yamanakab S, Itiéc J P, Crosd C and Pouchard M 2002 High Pressure Res. 22 539
|
[47] |
Connétable D, Timoshevskii V, Artacho E and Blase X 2001 Phys. Rev. Lett. 87 206405
|
[48] |
Nolas G S, Ward J M, Gryko J, Qiu L and White M A 2001 Phys. Rev. B 64 153201
|
[49] |
Sinko G V and Smirnow N A 2002 J. Phys.: Condens. Matter 14 6989
|
[50] |
Koelling D D and Arbman G O 1975 J. Phys. F: Met. Phys. 5 2041
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|