INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes |
L. Kavithaa b, A. Muniyappanc, S. Zdravkovićd, M. V. Satariće, A. Marlewskif, S. Dhamayanthic, D. Gopig h |
a Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu (CUTN), Thiruvarur 610101, India; b The Abdus Salam International Center for Theoretical Physics, Trieste, Italy; c Department of Physics, Periyar University, Salem 636011, India; d Institut za nuklearne nauke Vinca, Laboratorija za atomsku fiziku 040, Univerzitet u Beogradu, Postanski fah 522, 11001 Beograd, Serbia; e Fakultet tehnickih nauka, Univerzitet u Novom Sadu, 21000 Novi Sad, Serbia; f Institute of Mathematics, Poznan University of Technology, Piotrowo 3A, 60-965, Poznan, Poland; g Center for Nanoscience and Nanotechnology, Periyar University, Salem 636011, India; h Department of Chemistry, Periyar University, Salem 636011, India |
|
|
Abstract Among many types of proteinaceous filaments, microtubules (MTs) constitute the most rigid components of the cellular cytoskeleton. Microtubule dynamics is essential for many vital cellular processes such as intracellular transport, metabolism, and cell division. We investigate the nonlinear dynamics of inhomogeneous microtubulin systems and the MT dynamics is found to be governed by a perturbed sine-Gordon equation. In the presence of various competing nonlinear inhomogeneities, it is shown that this nonlinear model can lead to the existence of kink and antikink solitons moving along MTs. We demonstrate kink-antikink pair collision in the framework of Hirota's bilinearization method. We conjecture that the collisions of the quanta of energy propagating in the form of kinks and antikinks may offer a new view of the mechanism of the retrograde and anterograde transport direction regulation of motor proteins in microtubulin systems.
|
Received: 04 October 2013
Revised: 21 February 2014
Accepted manuscript online:
|
PACS:
|
87.16.Ka
|
(Filaments, microtubules, their networks, and supramolecular assemblies)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
04.20.Jb
|
(Exact solutions)
|
|
02.60.Lj
|
(Ordinary and partial differential equations; boundary value problems)
|
|
Fund: Project supported by the Serbian Ministry of Education and Sciences (Grant No. III45010), the URF from Periyar University, India, the research award of UGC, the major research project of NBHM, India, the Young Scientist Research Award of BRNS, India, the Junior Associateship of ICTP, Italy, and the Rajiv Gandhi National Fellowship of UGC. |
Corresponding Authors:
L. Kavithaa
E-mail: louiskavitha@yahoo.co.in
|
Cite this article:
L. Kavitha, A. Muniyappan, S. Zdravković, M. V. Satarić, A. Marlewski, S. Dhamayanthi, D. Gopi Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes 2014 Chin. Phys. B 23 098703
|
[1] |
Alberts B, Bray D, Lewis J, Raff M Roberts K and Watson J 2005 Molecular Biology of the Cell (New York & London: Garland publishing)
|
[2] |
Jorden M A and Wilson L 2004 Nat. Rev. Cancer 4 253
|
[3] |
Mollinedo F and Gajate C 2003 Apoptosis 8 413
|
[4] |
Gomez A M, Kerfant B G and Vasort G 2000 Circ. Res. 86 30
|
[5] |
Rappaport L and Samuel J L 1998 Int. Rev. Cytol. 113 101
|
[6] |
Webster D R and Patrick D L 2000 Am. J. Physiol. Heart Circ. 278 H1653
|
[7] |
Yonemochi H, Saikawa T, Takakura T, Ito S and Takaki R 1990 Circulation 81 1401
|
[8] |
Webster D R 2002 Cardiovasc Toxicol 2 75
|
[9] |
Tuszyński J A, Trpisová B, Sept D and Satarić M V 1997 Biosystems 42 153
|
[10] |
Stebbings H and Hunt C 1982 Cell Tiss. Res. 227 609
|
[11] |
Chretien D, Fuller S D and Karsenti E 1995 J. Cell Biol. 129 1311
|
[12] |
Chou K C, Zhang C T and Maggiora G M 1994 Biopolymers 34 143
|
[13] |
Satarić M V, Tuszyński J A and Zakula R B 1993 Phys. Rev. E 48 589
|
[14] |
Vinckier A, Dumortier C, Engelborghs Y and Hellemans L 1996 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14 1427
|
[15] |
Kurachi M, Hoshi M and Tashiro H 1995 Cell Motil. Cytoskeleton 30 221
|
[16] |
Dye R B, Fink S P and Williams R C J 1993 J. Biol. Chem. 268 6847
|
[17] |
Gittes F, Mickey B, Nettleton J and Howard J 1993 J. Cell Biol. 120 923
|
[18] |
Elbaum M, Fygenson D K and Libchaber A 1996 Phys. Rev. Lett. 76 4078
|
[19] |
Nogales E, Whittaker M, Milligan R A and Downing K H 1999 Cell 96 79
|
[20] |
Howard J 2001 Sinauer (Associates, MA)
|
[21] |
Mandelkow E M, Mandelkow E and Milligan R A 1991 J. Cell Biol. 114 977
|
[22] |
Satarić M V and Tuszyński J A 2005 J. Biol. Phys. 31 487
|
[23] |
Pierobon P, Mobilia M, Kouyos R and Frey E 2006 Phys. Rev. E 74 031906
|
[24] |
Kolomeisky A B 1998 J. Phys. A: Math. Gen. 31 1153
|
[25] |
Chou T and Lakatos G 2004 Phys. Rev. lett. 93 198101
|
[26] |
Trpisová B and Tuszynski J A 1997 Phys. Rev. E 55 3288
|
[27] |
Huang S and Ingber D E 1999 Nat. Cell Biol. 1 E131
|
[28] |
Kullander K 2005 Trends Neurosci. 28 239
|
[29] |
Estrella B, Estrella R, Oviedo J, Narvaez X, Reyes M T, Gutierrez M and Naumova E N 2005 Ecuador. Environ. Health Perspect. 113 607
|
[30] |
Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
|
[31] |
Athenstaedt H 1974 Ann. N. Y. Acad. Sci. 238 68
|
[32] |
Margulis L, To L and Chase D 1978 Science 200 1118
|
[33] |
Mickey B and Howard J 1995 J. Cell Biol. 130 909
|
[34] |
Frhlich H 1996 Modern Bioelectrochemistry edited by Guttman F and Keyzer H (New York)
|
[35] |
Barnett M P 1987 Molecular Systems to Process Analog and Digital Data Assosiatively (Washington, DC: Naval Research Laboratory)
|
[36] |
Marx A and Mandelkow E 1994 European Biophys. J. 22 405
|
[37] |
Miura M R 1978 Bcklund Transformation (Berlin: Springer-Verlag)
|
[38] |
Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformation in Solitons Theory and Geometry Applications (Shanghai: Shanghai Science Technology Press)
|
[39] |
Gardner C S, Greene C S, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
|
[40] |
Hirota R 1971 Phys. Rev. Lett. 27 1192
|
[41] |
Malfliet W 1992 Am. J. Phys. 60 650
|
[42] |
Kavitha L, Srividya B and Gopi D 2010 J. Magn. Magn. Mater. 322 1793
|
[43] |
Kavitha L, Akila N, Srividya B and Gopi D 2010 Nonl. Sci. Lett. A 1 95
|
[44] |
Kavitha L, Jayanthi S, Muniyappan A and Gopi D 2011 Phys. Scr. 84 035803
|
[45] |
Kavitha L, Venkatesh M, Jayanthi S and Gopi D 2012 Phys. Scr. 86 025403
|
[46] |
Zdravković S, Kavitha L, Satarić M V, Zeković S and Petrović J 2012 Chaos Soliton. Fract. 45 1378
|
[47] |
Gepreel K A and Omran S 2012 Chin. Phys. B 21 110204
|
[48] |
Kavitha L, Akila N, Prabhu A, Kuzmanovska-Barandovska O and Gopi D 2011 Math. Comput. Modelling 53 1095
|
[49] |
Wang M L 1996 Phys. Lett. A 213 279
|
[50] |
Yan Z and Zhang H Q 2001 Phys. Lett. A 285 355
|
[51] |
Yan Z Y 2003 Chaos Soliton. Fract. 18 299
|
[52] |
Kavitha L, Saravanan M, Srividya B and Gopi D 2011 Phys. Rev. E 84 066608
|
[53] |
Zeković S, Muniyappan A, Zdravković S and Kavitha L 2014 Chin. Phys. B 23 020504
|
[54] |
He J H and Wu X H 2006 Chaos Soliton. Fract. 30 700
|
[55] |
He J H and Abdou M A 2007 Chaos Soliton. Fract. 34 1421
|
[56] |
Wu X H and He J H 2007 Comput. Math. Appl. 54 966
|
[57] |
Fu H M and Dai Z D 2009 Int. J. Nonlinear Sci. Numer. Simul. 10 927
|
[58] |
Ma W X, Huang T W and Zhang Y 2010 Phys. Scr. 82 065003
|
[59] |
Kavitha L, Srividya B and Gopi D 2011 Comput. Math. Appl. 62 4691
|
[60] |
Hirota R 1973 J. Math. Phys. 14 805
|
[61] |
Zhou Z J, Fu J Z and Li Z B 2010 Appl. Math. Comput. 217 92
|
[62] |
Walker R A, O'Brien E T, Pryer N K, Soboeiro M F, Voter W A and Erickson H P 1988 J. Cell Biol. 107 1437
|
[63] |
Grego S, Cantillana V and Salmon E D 2001 Biophys. J. 81 66
|
[64] |
Schnitzer M J and Block S M 1997 Nature 388 386
|
[65] |
Vale R D and Milligan R A 2000 Science 288 88
|
[66] |
Mather W H and Fox R F 2006 Biophys. J. 91 2416
|
[67] |
Gross S P, Vershinin M and Shubeita G T 2007 Curr. Biol. 17 R478
|
[68] |
Hancock W O 2008 Curr. Biol. 18 R715
|
[69] |
Asbury C L 2005 Curr. Opinion in Cell Biol. 17 89
|
[70] |
Sindelar C V and Downing K H 2010 Proc. Natl. Acad. Sci. USA 107 4111
|
[71] |
Karp G, Vogel S, Kuhlmann-Krieg S and Beginnen K 2005 Molekulare Zellbiologie (Springer-Lehrbuch)
|
[72] |
Karp G 2005 Cell and Molecular Biology: Concepts and Experiments (4th edn.) (Hoboken, New Jersey: John Wiley and Sons) p. 598)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|