Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 098703    DOI: 10.1088/1674-1056/23/9/098703
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes

L. Kavithaa b, A. Muniyappanc, S. Zdravkovićd, M. V. Satariće, A. Marlewskif, S. Dhamayanthic, D. Gopig h
a Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu (CUTN), Thiruvarur 610101, India;
b The Abdus Salam International Center for Theoretical Physics, Trieste, Italy;
c Department of Physics, Periyar University, Salem 636011, India;
d Institut za nuklearne nauke Vinca, Laboratorija za atomsku fiziku 040, Univerzitet u Beogradu, Postanski fah 522, 11001 Beograd, Serbia;
e Fakultet tehnickih nauka, Univerzitet u Novom Sadu, 21000 Novi Sad, Serbia;
f Institute of Mathematics, Poznan University of Technology, Piotrowo 3A, 60-965, Poznan, Poland;
g Center for Nanoscience and Nanotechnology, Periyar University, Salem 636011, India;
h Department of Chemistry, Periyar University, Salem 636011, India
Abstract  Among many types of proteinaceous filaments, microtubules (MTs) constitute the most rigid components of the cellular cytoskeleton. Microtubule dynamics is essential for many vital cellular processes such as intracellular transport, metabolism, and cell division. We investigate the nonlinear dynamics of inhomogeneous microtubulin systems and the MT dynamics is found to be governed by a perturbed sine-Gordon equation. In the presence of various competing nonlinear inhomogeneities, it is shown that this nonlinear model can lead to the existence of kink and antikink solitons moving along MTs. We demonstrate kink-antikink pair collision in the framework of Hirota's bilinearization method. We conjecture that the collisions of the quanta of energy propagating in the form of kinks and antikinks may offer a new view of the mechanism of the retrograde and anterograde transport direction regulation of motor proteins in microtubulin systems.
Keywords:  microtubules      solitons      solitary solutions      partial differential equations  
Received:  04 October 2013      Revised:  21 February 2014      Accepted manuscript online: 
PACS:  87.16.Ka (Filaments, microtubules, their networks, and supramolecular assemblies)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  04.20.Jb (Exact solutions)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the Serbian Ministry of Education and Sciences (Grant No. III45010), the URF from Periyar University, India, the research award of UGC, the major research project of NBHM, India, the Young Scientist Research Award of BRNS, India, the Junior Associateship of ICTP, Italy, and the Rajiv Gandhi National Fellowship of UGC.
Corresponding Authors:  L. Kavithaa     E-mail:  louiskavitha@yahoo.co.in

Cite this article: 

L. Kavitha, A. Muniyappan, S. Zdravković, M. V. Satarić, A. Marlewski, S. Dhamayanthi, D. Gopi Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes 2014 Chin. Phys. B 23 098703

[1] Alberts B, Bray D, Lewis J, Raff M Roberts K and Watson J 2005 Molecular Biology of the Cell (New York & London: Garland publishing)
[2] Jorden M A and Wilson L 2004 Nat. Rev. Cancer 4 253
[3] Mollinedo F and Gajate C 2003 Apoptosis 8 413
[4] Gomez A M, Kerfant B G and Vasort G 2000 Circ. Res. 86 30
[5] Rappaport L and Samuel J L 1998 Int. Rev. Cytol. 113 101
[6] Webster D R and Patrick D L 2000 Am. J. Physiol. Heart Circ. 278 H1653
[7] Yonemochi H, Saikawa T, Takakura T, Ito S and Takaki R 1990 Circulation 81 1401
[8] Webster D R 2002 Cardiovasc Toxicol 2 75
[9] Tuszyński J A, Trpisová B, Sept D and Satarić M V 1997 Biosystems 42 153
[10] Stebbings H and Hunt C 1982 Cell Tiss. Res. 227 609
[11] Chretien D, Fuller S D and Karsenti E 1995 J. Cell Biol. 129 1311
[12] Chou K C, Zhang C T and Maggiora G M 1994 Biopolymers 34 143
[13] Satarić M V, Tuszyński J A and Zakula R B 1993 Phys. Rev. E 48 589
[14] Vinckier A, Dumortier C, Engelborghs Y and Hellemans L 1996 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 14 1427
[15] Kurachi M, Hoshi M and Tashiro H 1995 Cell Motil. Cytoskeleton 30 221
[16] Dye R B, Fink S P and Williams R C J 1993 J. Biol. Chem. 268 6847
[17] Gittes F, Mickey B, Nettleton J and Howard J 1993 J. Cell Biol. 120 923
[18] Elbaum M, Fygenson D K and Libchaber A 1996 Phys. Rev. Lett. 76 4078
[19] Nogales E, Whittaker M, Milligan R A and Downing K H 1999 Cell 96 79
[20] Howard J 2001 Sinauer (Associates, MA)
[21] Mandelkow E M, Mandelkow E and Milligan R A 1991 J. Cell Biol. 114 977
[22] Satarić M V and Tuszyński J A 2005 J. Biol. Phys. 31 487
[23] Pierobon P, Mobilia M, Kouyos R and Frey E 2006 Phys. Rev. E 74 031906
[24] Kolomeisky A B 1998 J. Phys. A: Math. Gen. 31 1153
[25] Chou T and Lakatos G 2004 Phys. Rev. lett. 93 198101
[26] Trpisová B and Tuszynski J A 1997 Phys. Rev. E 55 3288
[27] Huang S and Ingber D E 1999 Nat. Cell Biol. 1 E131
[28] Kullander K 2005 Trends Neurosci. 28 239
[29] Estrella B, Estrella R, Oviedo J, Narvaez X, Reyes M T, Gutierrez M and Naumova E N 2005 Ecuador. Environ. Health Perspect. 113 607
[30] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
[31] Athenstaedt H 1974 Ann. N. Y. Acad. Sci. 238 68
[32] Margulis L, To L and Chase D 1978 Science 200 1118
[33] Mickey B and Howard J 1995 J. Cell Biol. 130 909
[34] Frhlich H 1996 Modern Bioelectrochemistry edited by Guttman F and Keyzer H (New York)
[35] Barnett M P 1987 Molecular Systems to Process Analog and Digital Data Assosiatively (Washington, DC: Naval Research Laboratory)
[36] Marx A and Mandelkow E 1994 European Biophys. J. 22 405
[37] Miura M R 1978 Bcklund Transformation (Berlin: Springer-Verlag)
[38] Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformation in Solitons Theory and Geometry Applications (Shanghai: Shanghai Science Technology Press)
[39] Gardner C S, Greene C S, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[40] Hirota R 1971 Phys. Rev. Lett. 27 1192
[41] Malfliet W 1992 Am. J. Phys. 60 650
[42] Kavitha L, Srividya B and Gopi D 2010 J. Magn. Magn. Mater. 322 1793
[43] Kavitha L, Akila N, Srividya B and Gopi D 2010 Nonl. Sci. Lett. A 1 95
[44] Kavitha L, Jayanthi S, Muniyappan A and Gopi D 2011 Phys. Scr. 84 035803
[45] Kavitha L, Venkatesh M, Jayanthi S and Gopi D 2012 Phys. Scr. 86 025403
[46] Zdravković S, Kavitha L, Satarić M V, Zeković S and Petrović J 2012 Chaos Soliton. Fract. 45 1378
[47] Gepreel K A and Omran S 2012 Chin. Phys. B 21 110204
[48] Kavitha L, Akila N, Prabhu A, Kuzmanovska-Barandovska O and Gopi D 2011 Math. Comput. Modelling 53 1095
[49] Wang M L 1996 Phys. Lett. A 213 279
[50] Yan Z and Zhang H Q 2001 Phys. Lett. A 285 355
[51] Yan Z Y 2003 Chaos Soliton. Fract. 18 299
[52] Kavitha L, Saravanan M, Srividya B and Gopi D 2011 Phys. Rev. E 84 066608
[53] Zeković S, Muniyappan A, Zdravković S and Kavitha L 2014 Chin. Phys. B 23 020504
[54] He J H and Wu X H 2006 Chaos Soliton. Fract. 30 700
[55] He J H and Abdou M A 2007 Chaos Soliton. Fract. 34 1421
[56] Wu X H and He J H 2007 Comput. Math. Appl. 54 966
[57] Fu H M and Dai Z D 2009 Int. J. Nonlinear Sci. Numer. Simul. 10 927
[58] Ma W X, Huang T W and Zhang Y 2010 Phys. Scr. 82 065003
[59] Kavitha L, Srividya B and Gopi D 2011 Comput. Math. Appl. 62 4691
[60] Hirota R 1973 J. Math. Phys. 14 805
[61] Zhou Z J, Fu J Z and Li Z B 2010 Appl. Math. Comput. 217 92
[62] Walker R A, O'Brien E T, Pryer N K, Soboeiro M F, Voter W A and Erickson H P 1988 J. Cell Biol. 107 1437
[63] Grego S, Cantillana V and Salmon E D 2001 Biophys. J. 81 66
[64] Schnitzer M J and Block S M 1997 Nature 388 386
[65] Vale R D and Milligan R A 2000 Science 288 88
[66] Mather W H and Fox R F 2006 Biophys. J. 91 2416
[67] Gross S P, Vershinin M and Shubeita G T 2007 Curr. Biol. 17 R478
[68] Hancock W O 2008 Curr. Biol. 18 R715
[69] Asbury C L 2005 Curr. Opinion in Cell Biol. 17 89
[70] Sindelar C V and Downing K H 2010 Proc. Natl. Acad. Sci. USA 107 4111
[71] Karp G, Vogel S, Kuhlmann-Krieg S and Beginnen K 2005 Molekulare Zellbiologie (Springer-Lehrbuch)
[72] Karp G 2005 Cell and Molecular Biology: Concepts and Experiments (4th edn.) (Hoboken, New Jersey: John Wiley and Sons) p. 598)
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[3] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[4] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[7] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[8] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[9] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[10] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[11] Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals
Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平). Chin. Phys. B, 2020, 29(10): 104208.
[12] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[13] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[14] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[15] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
No Suggested Reading articles found!