Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097306    DOI: 10.1088/1674-1056/23/9/097306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Organic magnetoresistance based on hopping theory

Yang Fu-Jiang (杨福江), Xie Shi-Jie (解士杰)
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.
Keywords:  hopping      organic magnetoresistance      master equation      hyperfine interaction  
Received:  26 December 2013      Revised:  05 March 2014      Accepted manuscript online: 
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  72.20.Ee (Mobility edges; hopping transport)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923402), the National Natural Science Foundation of China (Grant Nos. 11174181 and 21161160445), and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B13029).
Corresponding Authors:  Xie Shi-Jie     E-mail:  xsj@sdu.edu.cn

Cite this article: 

Yang Fu-Jiang (杨福江), Xie Shi-Jie (解士杰) Organic magnetoresistance based on hopping theory 2014 Chin. Phys. B 23 097306

[1] Dediu V, Murgia M, Matacotta F C, Taliani C and Barbanera S 2002 Solid State Commun. 122 181
[2] Xiong Z H, Wu D, Vardeny Z V and Shi J 2004 Nature 427 821
[3] Chen B B, Jiang S W, Ding H F, Jiang Z S and Wu D 2014 Chin. Phys. B 23 018104
[4] Ren J F, Zhang Y B and Xie S J 2007 Acta Phys. Sin. 56 4785 (in Chinese)
[5] Yin S, Min W J, Gao K, Xie S J and Liu D S 2011 Chin. Phys. B 20 127201
[6] Davis A H and Bussmann K 2004 J. Vac. Sci. Technol. A 22 1885
[7] Francis T L, Mermer Ö, Veeraraghavan G and Wohlgenannt M 2004 New J. Phys. 6 185
[8] Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen D T, Wohlgenannt M, Kohler A, Al-Suti M K and Khan M S 2005 Phys. Rev. B 72 205202
[9] Shakya P, Desai P, Somerton M, Gannaway G, Kreouzis T and Gillin W P 2008 J. Appl. Phys. 103 103715
[10] Martin J L, Bergeson J D, Prigodin V N and Epstein A J 2010 Synth. Met. 160 291
[11] Kang H, Park C H, Lim J, Lee C, Kang W and Yoon C S 2012 Org. Electron. 13 1012
[12] Wang F J, Bässler H and Vardeny Z V 2008 Phys. Rev. Lett. 101 236805
[13] Bloom F L, Wagemans W and Koopmans B 2008 J. Appl. Phys. 103 07F320
[14] Bergeson J D, Prigodin V N, Lincoln D M and Epstein A J 2008 Phys. Rev. Lett. 100 067201
[15] Kang H, Lee I J and Yoon C S 2012 Appl. Phys. Lett. 100 073302
[16] Hu B and Wu Y 2007 Nat. Mater. 6 985
[17] Desai P, Shakya P, Kreouzis T and Gillin W P 2007 J. Appl. Phys. 102 073710
[18] Bloom F L, Wagemans W, Kemerink M and Koopmans B 2007 Phys. Rev. Lett. 99 257201
[19] Prigodin V N, Bergeson J D, Lincoln D M and Epstein A J 2006 Synth. Met. 156 757
[20] Desai P, Shakya P, Kreouzis T and Gillin W P 2007 Phys. Rev. B 75 094423
[21] Bobbert P A, Nguyen T D, van Oost F W A, Koopmans B and Wohlgenannt M 2007 Phys. Rev. Lett. 99 216801
[22] Kersten S P, Meskers S C J and Bobbert P A 2012 Phys. Rev. B 86 045210
[23] Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S and Scherf U 2006 Phys. Rev. B 74 045213
[24] Ding B F, Yao Y, Sun Z Y, Wu C Q, Gao X D, Wang Z J, Ding X M, Choy W C H and Hou X Y 2010 Appl. Phys. Lett. 97 163302
[25] Veeraraghavan G, Nguyena T D, Sheng Y, Mermer Ö and Wohlgenannt M 2007 J. Phys.: Condens. Matter 19 036209
[26] Li X X, Dong X F, Lei J, Xie S J and Saxena A 2012 Appl. Phys. Lett. 100 142408
[27] Harmon N J and FlattéM E 2012 Phys. Rev. Lett. 108 186602
[28] Yu Z G, Smith D L, Saxena A, Martin R L and Bishop A R 2000 Phys. Rev. Lett. 84 721
[29] Yu Z G, Smith D L, Saxena A, Martin R L and Bishop A R 2001 Phys. Rev. B 63 085202
[30] Pasveer W F, Cottaar J, Tanase C, Coehoorn R, Bobbert P A, Blom P W M, de Leeuw D M and Michels M A J 2005 Phys. Rev. Lett. 94 206601
[31] Marcus R A 1993 Rev. Mod. Phys. 65 599
[32] Blom P W M, de Jong M J M and van Munster M G 1997 Phys. Rev. B 55 R656
[33] Nguyen T D, Markosian G H, Wang F, Wojcik L, Li X G, Ehrenfreund E and Vardeny Z V 2010 Nat. Mater. 9 345
[34] Qin W, Yin S, Gao K and Xie S J 2012 Appl. Phys. Lett. 100 233304
[35] Qin W, Zhang Y B and Xie S J 2010 Acta Phys. Sin. 59 3494 (in Chinese)
[1] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[2] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[3] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[4] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[5] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[6] Theoretical study of the hyperfine interaction constants, Landé g-factors, and electric quadrupole moments for the low-lying states of the 61Niq+ ( q=11, 12, 14 , and 15) ions
Ting-Xian Zhang(张婷贤), Yong-Hui Zhang(张永慧), Cheng-Bin Li(李承斌), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(1): 013101.
[7] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[8] Phase diagram of interacting fermionic two-leg ladder with pair hopping
Wan-Li Liu(刘万里), Tian-Zhong Yuan(原天忠), Zhi Lin(林志), Wei Yan(闫伟). Chin. Phys. B, 2019, 28(2): 020303.
[9] Dynamical evolution of photon-added thermal state in thermal reservoir
Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春). Chin. Phys. B, 2019, 28(11): 110301.
[10] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[11] Transport spectroscopy through dopant atom array in silicon junctionless nanowire transistors
Xiao-Song Zhao(赵晓松), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(9): 097310.
[12] Molecular dynamics simulations on the dynamics of two-dimensional rounded squares
Zhang-lin Hou(侯章林), Ying Ju(句颖), Yi-wu Zong(宗奕吾), Fang-fu Ye(叶方富), Kun Zhao(赵坤). Chin. Phys. B, 2018, 27(8): 088203.
[13] Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films
H M Zeyada, F M El-Taweel, M M El-Nahass, M M El-Shabaan. Chin. Phys. B, 2016, 25(7): 077701.
[14] Dynamics of spinor Bose-Einstein condensate subject to dissipation
Man-Man Pang(庞曼曼), Ya-Jiang Hao(郝亚江). Chin. Phys. B, 2016, 25(4): 040501.
[15] Electronic mobility in the high-carrier-density limit ofion gel gated IDTBT thin film transistors
Bao Bei (包蓓), Shao Xian-Yi (邵宪一), Tan Lu (谭璐), Wang Wen-He (王文河), Wu Yue-Shen (吴越珅), Wen Li-Bin (文理斌), Zhao Jia-Qing (赵家庆), Tang Wei (唐伟), Zhang Wei-Min (张为民), Guo Xiao-Jun (郭小军), Wang Shun (王顺), Liu Ying (刘荧). Chin. Phys. B, 2015, 24(9): 098103.
No Suggested Reading articles found!