CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Stability and electronic structure studies of LaAlO3/SrTiO3 (110) heterostructures |
Du Yan-Ling (杜颜伶)a b, Wang Chun-Lei (王春雷)a, Li Ji-Chao (李吉超)a, Xu Pan-Pan (徐攀攀)a, Zhang Xin-Hua (张新华)a, Liu Jian (刘剑)a, Su Wen-Bin (苏文斌)a, Mei Liang-Mo (梅良模)a |
a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; b College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan 250355, China |
|
|
Abstract The first-principles calculations are employed to investigate the stability, magnetic, and electrical properties of the oxide heterostructure of LaAlO3/SrTiO3 (110). By comparing their interface energies, it is obtained that the buckled interface is more stable than the abrupt interface. This result is consistent with experimental observation. At the interface of LaAlO3/SrTiO3 (110) heterostructure, the Ti-O octahedron distortions cause the Ti tm 2g orbitals to split into the two-fold degenerate dxz/dyz and nondegenerate dxy orbitals. The former has higher energy than the latter. The partly filled two-fold degenerate t2g orbitals are the origin of two-dimensional electron gas, which is confined at the interface. Lattice mismatch between LaAlO3 and SrTiO3 leads to ferroelectric-like lattice distortions at the interface, and this is the origin of spin-splitting of Ti 3d electrons. Hence the magnetism appears at the interface of LaAlO3/SrTiO3 (110).
|
Received: 08 November 2013
Revised: 17 February 2014
Accepted manuscript online:
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
68.35.Md
|
(Surface thermodynamics, surface energies)
|
|
Fund: Project supported by the National Basis Research Program of China (Grant No. 2013CB632506), the National Natural Science Foundation of China (Grant Nos. 11374186, 51231007, and 51202132), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2012TS027). |
Corresponding Authors:
Li Ji-Chao
E-mail: lijichao@sdu.edu.cn
|
Cite this article:
Du Yan-Ling (杜颜伶), Wang Chun-Lei (王春雷), Li Ji-Chao (李吉超), Xu Pan-Pan (徐攀攀), Zhang Xin-Hua (张新华), Liu Jian (刘剑), Su Wen-Bin (苏文斌), Mei Liang-Mo (梅良模) Stability and electronic structure studies of LaAlO3/SrTiO3 (110) heterostructures 2014 Chin. Phys. B 23 087302
|
[1] |
Ohtomo A and Hwang H Y 2004 Nature 427 423
|
[2] |
Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Retschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
|
[3] |
Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493
|
[4] |
Basletic M, Maurice J L, Carrétéro C, Herranz G, Copie O, Bibes M, Jacquet E, Bouzehouane K, Fusil S and Bar-thélémy A 2008 Nat. Mater. 7 621
|
[5] |
Ariando, Wang X, Baskaran G, Liu Z Q, Huijben J, Yi J B, Annadi A, Barman A R, Rusydi A, Dhar S, Feng Y P, Ding J, Hilgenkamp H and Venkatesan T 2011 Nat. Commun. 2 188
|
[6] |
Lee J S, Xie Y W, Sato H K, Bell C, Hikita Y, Hwang H Y and Kao C C 2013 Nat. Mater. 12 703
|
[7] |
Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802
|
[8] |
Li L, Richter C, Mannhart J and Ashoori R C 2011 Nat. Phys. 7 762
|
[9] |
Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767
|
[10] |
Li J C, Beltrán J I and Muñnoz M C 2013 Phys. Rev. B 87 075411
|
[11] |
Wang H Y, Duan Z G, Liao W H and Zhou G H 2010 Chin. Phys. B 19 037301
|
[12] |
Pentcheva R and Pickett W E 2009 Phys. Rev. Lett. 102 107602
|
[13] |
Savoia A, Paparo D, Perna P, Ristic Z, Salluzzo M, Miletto Granozio F, Scotti di Uccio U, Richter C, Thiel S, Mannhart J and Marrucci L 2009 Phys. Rev. B 80 075110
|
[14] |
Chen W H, Zhang R Z and Yang L N 2012 Mater. Rev. 26 1 (in Chinese)
|
[15] |
Mukunoki Y, Nakagawa N, Susaki T and Hwang H Y 2005 Appl. Phys. Lett. 86 171908
|
[16] |
Annadi A, Zhang Q, Wang X R, Tuzla N, Gopinadhan K, Lü W M, Roy Barman A, Liu Z Q, Srivastava A, Saha S, Zhao Y L, Zeng S W, Dhar S, Olsson E, Gu B, Yunoki S, Maekawa S, Hilgenkamp H, Venkatesan T and Ariando 2013 Nat. Commun. 4 1838
|
[17] |
Herranz G, Sánchez F, Dix N, Scigaj M and Fontcuberta J 2012 Sci. Rep. 2 758
|
[18] |
Bottin F, Finocchi F and Noguera C 2003 Phys. Rev. B 68 035418
|
[19] |
Noguera C 2000 J. Phys.: Condens. Matter 12 R367
|
[20] |
Pojani A, Finocchi F and Noguera C 1999 Surf. Sci. 442 179
|
[21] |
Eglitis R I and Rohlfing M 2012 Phys. Status Solidi B pp. 1-7 (Wiley Online Library)
|
[22] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[23] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[24] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[25] |
Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
|
[26] |
Mizokawa T and Fujimori A 1995 Phys. Rev. B 51 12880
|
[27] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[28] |
Chakhalian J, Millis A J and Rondinelli J 2012 Nat. Mater. 11 92
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|