ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Systematical analysis of mode-locked fiber lasers using single-walled carbon nanotube saturable absorbers |
Zhang Xiao (张晓), Song Yan-Rong (宋晏蓉) |
Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract The output characteristics of the Er-doped mode-locked fiber laser using a single-walled carbon nanotube saturable absorber are investigated theoretically with a nonlinear Schrödinger equation and a saturable absorption equation using realistic parameters. Stable self-starting mode-locking pulses are achieved under net normal, net zero, and net anomalous cavity group velocity dispersion (GVD) respectively. A spectrum with a flat top is obtained from the net normal cavity GVD laser while a spectrum with Kelly side-bands is obtained from the net anomalous cavity GVD laser. The characteristics of the pulse duration changing with cavity GVD and modulation depth of the single-walled carbon nanotubes are discussed. The characteristics of the mode-locking pulses from net normal, net zero, and net anomalous cavity GVD mode-locked fiber lasers are compared. These systematical results are useful for designing mode-locked fiber lasers with saturable absorbers made by different kinds of carbon nano-materials.
|
Received: 04 September 2013
Revised: 07 November 2013
Accepted manuscript online:
|
PACS:
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the National Key Basic Research Progrm of China (Grant No. 2013CB922404), the National Natural Science Foundation of China (Grant No. 61177047), and the Key Project of the National Natural Science Foundation of China (Grant No. 61235010). |
Corresponding Authors:
Song Yan-Rong
E-mail: yrsong@bjut.edu.cn
|
Cite this article:
Zhang Xiao (张晓), Song Yan-Rong (宋晏蓉) Systematical analysis of mode-locked fiber lasers using single-walled carbon nanotube saturable absorbers 2014 Chin. Phys. B 23 064204
|
[1] |
Hernandez-Romano I, Mandridis D, May-Arrioja D A, Sanchez-Mondragon J J and Delfyett P J 2011 Opt. Lett. 36 2122
|
[2] |
Baylam I, Ozharar S, Cankaya H, Choi S Y, Kim K, Rotermund F, Griebner U, Petrov V and Sennaroglu A 2012 Opt. Lett. 37 3555
|
[3] |
Schmidt A, Rivier S, Steinmeyer G, Yim J H, Cho W B, Lee S, Rotermund F, Pujol M C, Mateos X, Aguiló M, Díaz F, Petrov V and Griebner U 2008 Opt. Lett. 33 729
|
[4] |
Hernandez-Romano I, Davila-Rodriguez J, Mandridis D, Sanchez-Mondragon J J, May-Arrioja D and P Delfyett J 2011 J. Lightwave Technol. 29 3237
|
[5] |
Zhao G Z, Xiao X S, Meng F, Mei J W and Yang C X 2013 Chin. Phys. B 22 104205
|
[6] |
Qu Z S, Wang Y G, Liu J, Zheng L H, Su L B and Xu J 2012 Chin. Phys. B 21 064211
|
[7] |
Chen Y C, Raravikar N R, Schadler L S, Ajayan P M, Zhao Y P, Lu T M, Wang G C and Zhang X C 2002 Appl. Phys. Lett. 81 975
|
[8] |
Set S Y, Yaguchi H, Tanaka Y and Jablonski M 2004 J. Lightwave Technol. 22 51
|
[9] |
Song Y, Set S Y, Yamashita S, Goh C S and Kotake T 2005 IEEE Photon. Technol. Lett. 17 1623
|
[10] |
Li X, Wang Y, Wang Y, Liu X, Zhao W, Hu X, Yang Z, Zhang W, Gao C, Shen D, Li C and Tsang Y H 2013 Opt. Laser Technol. 47 144
|
[11] |
Fang Q, Kieu K and Peyghambarian N 2010 IEEE Photon. Technol. Lett. 22 1656
|
[12] |
Shohda F, Shirato T, Nakazawa M, Komatsu K and Kaino T 2008 Opt. Express 16 21191
|
[13] |
Martinez A and Yamashita S 2011 Opt. Express 19 6155
|
[14] |
Nozaki Y, Nishizawa N, Omoda E, Kataura H and Sakakibara Y 2012 Opt. Express 37 5079
|
[15] |
Agrawal G 2001 Applications of Nonlinear Fiber Optics (Scan Diego: Academic Press)
|
[16] |
Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
|
[17] |
Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904
|
[18] |
Liu X, Wang L, Li X, Sun H, Lin A, Lu K, Wang Y and Zhao W 2009 Opt. Express 17 8506
|
[19] |
Wang R, Dai Y, Yan L, Wu J, Xu K, Li Y and Lin J 2012 Opt. Express 20 6406
|
[20] |
Liu X M 2010 Phys. Rev. A 81 023811
|
[21] |
Liu X M 2010 Phys. Rev. A 82 063834
|
[22] |
Kong L J, Xiao X S and Yang C X 2011 Chin. Phys. B 20 024207
|
[23] |
Liu X M 2009 Opt. Express 17 22401
|
[24] |
Mao D, Liu X and Lu H 2012 Opt. Lett. 37 2619
|
[25] |
Tan S J, Ismail M A, Shahabuddin N S, Ahmad H, Arof H and Harun S W 2012 Laser Phys. 22 1240
|
[26] |
Song Y F, Zhang H, Tang D Y and Shen D Y 2012 Opt. Express 20 27283
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|