ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Switching from positive to negative absorption with electromagnetically induced transparency in circuit quantum electrodynamics |
Li Hai-Chao (李海超), Ge Guo-Qin (葛国勤) |
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract We present a theoretical study of electromagnetically induced transparency (EIT) in a superconducting quantum circuit with a tunable V-shaped energy spectrum derived from two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. Using the density matrix formalism and the steady-state approximation, we obtain the analytical expressions of the first-order matrix element associated with the absorption and dispersion of the probe field for two different V-type schemes. Our results show that, for this superconducting quantum system, it is possible to realize a remarkable phenomenon that dynamic conversion between EIT and EIT with amplification without population inversion. Such a unique optical feature has potential applications in quantum optical devices and quantum information processing.
|
Received: 17 August 2013
Revised: 24 October 2013
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
85.25.-j
|
(Superconducting devices)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274132) and the Natural Science Foundation of Hubei Province, China. |
Corresponding Authors:
Ge Guo-Qin
E-mail: gqge@hust.edu.cn
|
About author: 42.50.Gy; 85.25.-j; 32.80.Qk |
Cite this article:
Li Hai-Chao (李海超), Ge Guo-Qin (葛国勤) Switching from positive to negative absorption with electromagnetically induced transparency in circuit quantum electrodynamics 2014 Chin. Phys. B 23 054206
|
[1] |
Harris S E 1997 Phys. Today 50 36
|
[2] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[3] |
Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
|
[4] |
Mücke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas C J and Rempe G 2010 Nature 465 755
|
[5] |
Lazoudis A, Kirova T, Ahmed E H, Qi P, Huennekens J and Lyyra A M 2011 Phys. Rev. A 83 063419
|
[6] |
Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S and Weatherill K J 2012 Opt. Lett. 37 3858
|
[7] |
Sun Y F, Tan L and Xu Y 2013 Chin. Phys. B 22 030309
|
[8] |
Chanu S R, Pandey K and Natarajan V 2012 Europhys. Lett. 98 44009
|
[9] |
Dahl K, Molella L S, Rinkleff R H and Danzmann K 2008 Opt. Lett. 33 983
|
[10] |
Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
|
[11] |
You J Q and Nori F 2011 Nature 474 589
|
[12] |
Astafiev O, Inomata K, Niskanen A O, Yamamoto T, Pashkin Y A, Nakamura Y and Tsai J S 2007 Nature 449 588
|
[13] |
Marthaler M, Utsumi Y, Golubev D S, Shnirman A and Schön G 2011 Phys. Rev. Lett. 107 093901
|
[14] |
Kelly W R, Dutton Z, Schlafer J, Mookerji B and Ohki T A 2010 Phys. Rev. Lett. 104 163601
|
[15] |
Astafiev O, Zagoskin A M, Abdumalikov A A, Jr, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
|
[16] |
Rebić S, Twanley J and Milburn G J 2009 Phys. Rev. Lett. 103 150503
|
[17] |
Hu Y, Ge G Q, Chen S, Yang X F and Chen Y L 2011 Phys. Rev. A 84 012329
|
[18] |
Murali K V R M, Dutton Z, Oliver W D, Crankshaw D S and Orlando T P 2004 Phys. Rev. Lett. 93 087003
|
[19] |
Dutton Z, Murali K V R M, Oliver W D and Orlando T P 2006 Phys. Rev. B 73 104516
|
[20] |
Zhao H, Li T F, Liu J S and Chen W 2012 Acta Phys. Sin. 61 154215 (in Chinese)
|
[21] |
Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
|
[22] |
Clarke J and Wilhelm F K 2008 Nature 453 1031
|
[23] |
Yuan X Z, Goan H S, Lin C H, Zhu K D and Jiang Y W 2008 New J. Phys. 10 095016
|
[24] |
Ian H, Liu Y X and Nori F 2010 Phys. Rev. A 81 063823
|
[25] |
Joo J, Bourassa J, Blais A and Sanders B C 2010 Phys. Rev. Lett. 105 073601
|
[26] |
Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V and Tsai J S 2003 Nature 421 823
|
[27] |
Srinivasan S J, Hoffman A J, Gambetta J M and Houck A A 2011 Phys. Rev. Lett. 106 083601
|
[28] |
Welch G R, Padmabandu G G, Fry E S, Lukin M D, Nikonov D E, Sander F, Scully M O, Weis A and Tittel F K 1998 Found. Phys. 28 621
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|