Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 054103    DOI: 10.1088/1674-1056/23/5/054103
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The polarization effect of a laser in multiphoton Compton scattering

Liang Guo-Hua (梁国华), Lü Qing-Zheng (吕清正), Teng Ai-Ping (滕爱萍), Li Ying-Jun (李英骏)
State Key Laboratory for Geomechanics and Deep Underground Engineer, China University of Mining and Technology, Beijing 100083, China
Abstract  The multiphoton Compton scattering in a high-intensity laser beam is studied by using the laser-dressed quantum electrodynamics (QED) method, which is a non-perturbative theory for the interaction between a plane electromagnetic field and a charged particle. In order to analyze in the real experimental condition, a Lorentz transformation for the cross section of this process is derived between the laboratory frame and the initial rest frame of electrons. The energy of the scattered photon is analyzed, as well as the cross sections for different laser intensities and polarizations and different electron velocities. The angular distribution of the emitted photon is investigated in a special velocity of the electron, in which for a fixed number of absorbed photons, the electron energy will not change after the scattering in the lab frame. We obtain the conclusion that higher laser intensities suppress few-laser-photon absorption and enhance more-laser-photon absorption. A comparison between different polarizations is also made, and we find that the linearly polarized laser is more suitable to generate nonlinear Compton scattering.
Keywords:  multiphoton Compton scattering      laser-dressed quantum electrodynamics (QED)      cross section      polarization  
Received:  23 August 2013      Revised:  09 October 2013      Accepted manuscript online: 
PACS:  41.60.-m (Radiation by moving charges)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374360) and the National Basic Research Program of China (Grant No. 2013CBA01504).
Corresponding Authors:  Liang Guo-Hua, Li Ying-Jun     E-mail:  xiaolianghmq@gmail.com;lyj@aphy.iphy.ac.cn
About author:  41.60.-m; 52.25.Os

Cite this article: 

Liang Guo-Hua (梁国华), Lü Qing-Zheng (吕清正), Teng Ai-Ping (滕爱萍), Li Ying-Jun (李英骏) The polarization effect of a laser in multiphoton Compton scattering 2014 Chin. Phys. B 23 054103

[1] Compton A H 1923 Phys. Rev. 22 409
[2] Klein O and Nishina Y 1929 Z. Phys. 52 853
[3] Ting A, Fischer R, Fisher A, Evans K, Burris R, Krall J, Esarey E and Sprangle P 1995 J. Appl. Phys. 78 575
[4] Ting A, Fischer R, Fisher A, Moore C I, Hafizi B, Elton R, Krushelnick K, Burris R, Jackel S, Evans K, Weaver J N, Sprangle P, Esarey E, Baine M and Ride S 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 375 ABS68
[5] Leemans W P, Schoenlein R W, Volfbeyn P, Chin A H, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S and Shank C V 1996 Phys. Rev. Lett. 77 4182
[6] Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenko V, Kusche K, Siddons P, Skaritka J, Kumita T, Tsunemi A, Omori T, Urakawa J, Washio M, Yokoya K, Okugi T, Liu Y, He P and Cline D 2000 Phys. Rev. ST Accel. Beams 3 090702
[7] Sakai I, Aoki T, Dobashi K, Fukuda M, Higurashi A, Hirose T, limura T, Kurihara Y, Okugi T, Omori T, Urakawa J, Washio M and Yokoya K 2003 Phys. Rev. ST Accel. Beams 6 091001
[8] Di Piazza A, Müller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
[9] Bula C, McDonald K T, Prebys E J, Bamber, C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L, Field R C, Horton-Smith G, Odian A C, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K and Weidemann A W 1996 Phys. Rev. Lett. 76 3116
[10] Narozhny N B, Nikishov A I and Ritus V I 1965 Sov. Phys. JETP 20 622
[11] Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G and Krushelnick K 2008 Opt. Express 16 2109
[12] Xie S Y, Lu Y F, Ma Q L, Wang P Y, Shen Y, Zong N, Yang F, Bo Y, Peng Q J, Cui D F and Xu Z Y 2010 Chin. Phys. B 19 064208
[13] Schwinger J 1951 Phys. Rev. 82 664
[14] Jiang M, Xie B S, Sang H B and Li Z L 2013 Chin. Phys. B 22 100307
[15] Brown L S and Kibble T W B 1964 Phys. Rev. 133 A705
[16] Goldman I I 1964 Sov. Phys. JETP 46 1412
[17] Nikishov A I and Ritus V I 1964 Sov. Phys. JETP 19 529
[18] Zeldovich Y B 1975 Sov. Phys. Usp. 18 79
[19] Baier V N, Katkov V M, Milstein A I and Strakhovenko V M 1976 Sov. Phys. JETP 42 400
[20] Ivanov D Y, Kotkin G L and Serbo V G 2004 Eur. Phys. J. C 36 127
[21] Mackenroth F and Di Piazza A 2011 Phys. Rev. A 83 032106
[22] Mackenroth F and Di Piazza A 2013 Phys. Rev. A 87 033401
[23] Kang H, Quan W and Lin Z 2010 Phys. Rev. Lett. 104 203001
[24] Volkov D M 1935 Z. Phys. 94 250
[25] Furry W H 1951 Phys. Rev. 81 115
[26] Müller C, Hatsagortsyan K Z and Keitel C H 2008 Phys. Rev. A 78 033408
[27] Müller C, Hatsagortsyan K Z and Keitel C H 2006 Phys. Rev. D 74 074017
[28] Greiner W and Reinhardt J 2009 Quantum Electrodynamics (Berlin: Springer Press)
[29] Salamin Y I and Faisal F H M 1996 Phys. Rev. A 54 4383
[30] Boca M and Florescu V 2010 Romanian Journal in Physics 55 5
[31] Reiss H R 1962 J. Math. Phys. 3 59
[32] Dattoli G, Chiccoli C and Lorenzutta S 1994 Math. Anal. Appl. 184 201
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[4] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[13] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[14] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[15] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
No Suggested Reading articles found!