Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090312    DOI: 10.1088/1674-1056/22/9/090312
GENERAL Prev   Next  

Spectroscopy and coherent manipulation of single and coupled flux qubits

Wu Yu-Lin (吴玉林), Deng Hui (邓辉), Huang Ke-Qiang (黄克强), Tian Ye (田野), Yu Hai-Feng (于海峰), Xue Guang-Ming (薛光明), Jin Yi-Rong (金贻荣), Li Jie (李洁), Zhao Shi-Ping (赵士平), Zheng Dong-Ning (郑东宁)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time TRabi=78 ns and energy relaxation time T1=315 ns. We found that the value of TRabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits.
Keywords:  quantum computing      flux qubit      Rabi oscillation      dc-SQUID  
Received:  26 March 2013      Revised:  19 April 2013      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Cp (Josephson devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00106 and 2009CB929102), the National Natural Science Foundation of China (Grant Nos. 11104333, 10974243, 11104340, and 11161130519), and the Knowledge Innovation Program of the Chinese Academy of Sciences.
Corresponding Authors:  Zheng Dong-Ning     E-mail:  dzheng@aphy.iphy.ac.cn

Cite this article: 

Wu Yu-Lin (吴玉林), Deng Hui (邓辉), Huang Ke-Qiang (黄克强), Tian Ye (田野), Yu Hai-Feng (于海峰), Xue Guang-Ming (薛光明), Jin Yi-Rong (金贻荣), Li Jie (李洁), Zhao Shi-Ping (赵士平), Zheng Dong-Ning (郑东宁) Spectroscopy and coherent manipulation of single and coupled flux qubits 2013 Chin. Phys. B 22 090312

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 2-12
[2] Gershenfeld N A and Chuang I L 1997 Science 275 350
[3] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[4] Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble H J 1997 Phys. Rev. Lett. 75 4710
[5] Makhlin Y and Schön G 2001 Rev. Mod. Phys. 73 357
[6] Kane B 1998 Nature 393 133
[7] Kane B E, McAlpine N S, Dzurak A S, Clark R G, Milburn G J, Sun He Bi and Wiseman H 2000 Phys. Rev. B 61 2961
[8] Loss D and DiVincenzo D P 1998 Phys. Rev.A 57 120
[9] Zanardi P and Rossi F 1998 Phys. Rev. Lett. 81 4752
[10] Clarke J and Wilhelm F K 2008 Nature 453 1031
[11] Josephson B D 1962 Phys. Lett. 1 251
[12] Leggett A J and Garg A 1985 Phys. Rev. Lett. 54 857
[13] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[14] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
[15] Mooij J E, Orlando T P, Levitov L S, Tian L, van der Wal C H and Lloyd S 1999 Science 285 1036
[16] Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L S, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
[17] van der Wal C H, ter Haar A C J, Wilhelm F K, Schouten R N, Harmans C J P M, Orlando T P, Lloyd S and Mooij J E 2000 Science 290 773
[18] Cong S H, Wang Y W, Sun G Z, Chen J, Yu Y and Wu P H 2011 Chin. Phys. B 20 050316
[19] Jiang W, Yu Y and Wei L F 2011 Chin. Phys. B 20 080307
[20] Hua T, Xu W W, Shi J X, An D Y, Sun G Z, Yu Y and Wu P H 2012 Chin. Phys. B 21 098501
[21] Martinis J M, Nam S, Aumentado J and Urbina C 2002 Phys. Rev. Lett. 89 117901
[22] Wu Y L, Deng H, Yu H F, Xue G M, Tian Ye, Li J, Chen Y F, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 060309
[23] Dolan G J 1977 Appl. Phys. Lett. 31 337
[24] Tian Y, Yu H F, Deng H, Xue G M, Liu D T, Ren Y F, Chen G H, Zheng D N, Jing X N, Lu L, Zhao S P and Han S 2012 Rev. Sci. Instrum. 83 033907
[25] Rabi I I 1937 Phys. Rev. 51 652
[26] Plourde B L T, Zhang J, Whaley K B, Wilhelm F K, Robertson T L, Hime T, Linzen S, Reichardt P A, Wu C E and Clarke J 2004 Phys. Rev. B 70 140501
[27] Niskanen A O, Nakamura Y and Tsai J S 2006 Phys. Rev. B 73 094506
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[3] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[4] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[5] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[6] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
[7] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[8] Fabrication and characterization of superconducting multiqubit device with niobium base layer
Feifan Su(宿非凡), Zhaohua Yang(杨钊华), Shoukuan Zhao(赵寿宽), Haisheng Yan(严海生), Ziting Wang(王子婷), Xiaohui Song(宋小会), Ye Tian(田野), and Shiping Zhao(赵士平). Chin. Phys. B, 2021, 30(10): 100304.
[9] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[10] Characterization of barrier-tunable radio-frequency-SQUID for Maxwell's demon experiment
Gang Li(李刚), Suman Dhamala, Hao Li(李浩), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(6): 068501.
[11] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[12] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[13] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[14] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
[15] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
No Suggested Reading articles found!