|
|
Spectroscopy and coherent manipulation of single and coupled flux qubits |
Wu Yu-Lin (吴玉林), Deng Hui (邓辉), Huang Ke-Qiang (黄克强), Tian Ye (田野), Yu Hai-Feng (于海峰), Xue Guang-Ming (薛光明), Jin Yi-Rong (金贻荣), Li Jie (李洁), Zhao Shi-Ping (赵士平), Zheng Dong-Ning (郑东宁) |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time TRabi=78 ns and energy relaxation time T1=315 ns. We found that the value of TRabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits.
|
Received: 26 March 2013
Revised: 19 April 2013
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.Cp
|
(Josephson devices)
|
|
85.25.Dq
|
(Superconducting quantum interference devices (SQUIDs))
|
|
85.25.Hv
|
(Superconducting logic elements and memory devices; microelectronic circuits)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00106 and 2009CB929102), the National Natural Science Foundation of China (Grant Nos. 11104333, 10974243, 11104340, and 11161130519), and the Knowledge Innovation Program of the Chinese Academy of Sciences. |
Corresponding Authors:
Zheng Dong-Ning
E-mail: dzheng@aphy.iphy.ac.cn
|
Cite this article:
Wu Yu-Lin (吴玉林), Deng Hui (邓辉), Huang Ke-Qiang (黄克强), Tian Ye (田野), Yu Hai-Feng (于海峰), Xue Guang-Ming (薛光明), Jin Yi-Rong (金贻荣), Li Jie (李洁), Zhao Shi-Ping (赵士平), Zheng Dong-Ning (郑东宁) Spectroscopy and coherent manipulation of single and coupled flux qubits 2013 Chin. Phys. B 22 090312
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 2-12
|
[2] |
Gershenfeld N A and Chuang I L 1997 Science 275 350
|
[3] |
Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
|
[4] |
Turchette Q A, Hood C J, Lange W, Mabuchi H and Kimble H J 1997 Phys. Rev. Lett. 75 4710
|
[5] |
Makhlin Y and Schön G 2001 Rev. Mod. Phys. 73 357
|
[6] |
Kane B 1998 Nature 393 133
|
[7] |
Kane B E, McAlpine N S, Dzurak A S, Clark R G, Milburn G J, Sun He Bi and Wiseman H 2000 Phys. Rev. B 61 2961
|
[8] |
Loss D and DiVincenzo D P 1998 Phys. Rev.A 57 120
|
[9] |
Zanardi P and Rossi F 1998 Phys. Rev. Lett. 81 4752
|
[10] |
Clarke J and Wilhelm F K 2008 Nature 453 1031
|
[11] |
Josephson B D 1962 Phys. Lett. 1 251
|
[12] |
Leggett A J and Garg A 1985 Phys. Rev. Lett. 54 857
|
[13] |
Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
|
[14] |
Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
|
[15] |
Mooij J E, Orlando T P, Levitov L S, Tian L, van der Wal C H and Lloyd S 1999 Science 285 1036
|
[16] |
Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L S, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
|
[17] |
van der Wal C H, ter Haar A C J, Wilhelm F K, Schouten R N, Harmans C J P M, Orlando T P, Lloyd S and Mooij J E 2000 Science 290 773
|
[18] |
Cong S H, Wang Y W, Sun G Z, Chen J, Yu Y and Wu P H 2011 Chin. Phys. B 20 050316
|
[19] |
Jiang W, Yu Y and Wei L F 2011 Chin. Phys. B 20 080307
|
[20] |
Hua T, Xu W W, Shi J X, An D Y, Sun G Z, Yu Y and Wu P H 2012 Chin. Phys. B 21 098501
|
[21] |
Martinis J M, Nam S, Aumentado J and Urbina C 2002 Phys. Rev. Lett. 89 117901
|
[22] |
Wu Y L, Deng H, Yu H F, Xue G M, Tian Ye, Li J, Chen Y F, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 060309
|
[23] |
Dolan G J 1977 Appl. Phys. Lett. 31 337
|
[24] |
Tian Y, Yu H F, Deng H, Xue G M, Liu D T, Ren Y F, Chen G H, Zheng D N, Jing X N, Lu L, Zhao S P and Han S 2012 Rev. Sci. Instrum. 83 033907
|
[25] |
Rabi I I 1937 Phys. Rev. 51 652
|
[26] |
Plourde B L T, Zhang J, Whaley K B, Wilhelm F K, Robertson T L, Hime T, Linzen S, Reichardt P A, Wu C E and Clarke J 2004 Phys. Rev. B 70 140501
|
[27] |
Niskanen A O, Nakamura Y and Tsai J S 2006 Phys. Rev. B 73 094506
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|