Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037102    DOI: 10.1088/1674-1056/23/3/037102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of Cr, Mo, and Nb additions on intergranular cohesion of ferritic stainless steel:First-principles determination

Li Chun-Xia (李春霞)a b c, Dang Sui-Hu (党随虎)a b c, Wang Li-Ping (王丽萍)a b, Zhang Cai-Li (张彩丽)a b, Han Pei-De (韩培德)a b
a Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
b College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
c College of Physics and Electronic Engineering, Yangtze Normal University, Chongqing 408003, China
Abstract  Effects of Cr, Mo, and Nb on the ferritic stainless steel ∑(210) grain boundary and intragranularity are investigated using the first-principles principle. Different positions of solute atoms are considered. Structural stability is lowered by Cr doping and enhanced by Mo and Nb doping. A ranking on the effect of solute atoms enhancing the cohesive strength of the grain boundary, from the strongest to the weakest is Cr, Mo, and Nb. Cr clearly prefers to locate in the intragranular region of Fe rather than in the grain boundary, while Mo and Nb tend to segregate to the grain boundary. Solute Mo and Nb atoms possess a strong driving force for segregation to the grain boundary from the intragranular region, which increases the grain boundary embrittlement. For Mo-and Nb-doped systems, a remarkable quantity of electrons accumulate in the region close to Mo (Nb). Therefore, the bond strength may increase. With Cr, Mo, and Nb additions, an anti-parallel island is formed around the center of the grain boundary.
Keywords:  first-principles principle      grain boundary cohesion      electronic properties      ferritic stainless steel  
Received:  05 August 2013      Revised:  02 September 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.Be (Transition metals and alloys)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51371123), the Specialized Research Foundation of the Doctoral Program for Institution of Higher Education of China (Grant No. 2013140211003), the Science and Technology Research Project of Municipal Education Commission of Chongqin, China (Grant Nos. KJ131308 and KJ131315), and the Natural Science Foundation of Science and Technology Commission of Chongqin, China (Grant No. cstc2012jjA90017).
Corresponding Authors:  Han Pei-De     E-mail:  hanpeide@tyut.edu.cn

Cite this article: 

Li Chun-Xia (李春霞), Dang Sui-Hu (党随虎), Wang Li-Ping (王丽萍), Zhang Cai-Li (张彩丽), Han Pei-De (韩培德) Effect of Cr, Mo, and Nb additions on intergranular cohesion of ferritic stainless steel:First-principles determination 2014 Chin. Phys. B 23 037102

[1] Amuda M O H and Mridha S 2012 Mater. Design 35 609
[2] Hu J, Wang X P, Zhuang Z, Zhang T, Fang Q F and Liu C S 2013 Chin. Phys. Lett. 30 046201
[3] Chung S K and Kyung Y J 2012 Chin. Phys. Lett. 29 060702
[4] Rice J R and Wang J S 1989 Mater. Sci. Eng. A 107 23
[5] Braithwaite J S and Rez P 2005 Acta Mater. 53 2715
[6] Wachowicz E and Kiejna A 2008 Comput. Mater. Sci. 43 736
[7] Fen Y Q and Wang C Y 2001 Comput. Mater. Sci. 20 48
[8] Wang S Y, Wang C Y and Zhao D L 2004 J. Alloy. Compd. 368 308
[9] Tian Z X, Xiao W, Wan F R and Geng W T 2010 J. Nucl. Mater. 407 200
[10] Wu R, Freeman A J and Olson G B 1994 Science 265 376
[11] Zhang Y, Feng W Q, Liu Y L, Lu G H and Wang T M 2009 Nucl. Instrum. Meth. B 267 3200
[12] Hristova E, Janisch R, Drautz R and Hartmaier A 2011 Comput. Mater. Sci. 50 1088
[13] Gesari S, Irigoyen B and Juan A 2006 Appl. Surf. Sci. 253 1939
[14] Birnbaum H K and Sofronis P 1994 Mater. Sci. Eng. A 176 191
[15] Lassila D H and Birnbaum H K 1987 Acta Metall. 35 1815
[16] Kim S, Kim S G, Horstemeyer M F and Rhee H 2012 arXiv:1201.5915
[17] Čák M, Šob M and Hafner J 2008 Phys. Rev. B 78 054418
[18] Shang J X and Wang C Y 2001 J. Phys.: Condens. Matter 13 9635
[19] Shang J X, Zhao X D, Wang F H, Wang C Y and Xu H B 2006 Comput. Mater. Sci. 38 217
[20] Yeşilleten D, Nastar M, Arias T A, Paxton A T and Yip S 1998 Phys. Rev. Lett. 81 2998
[21] Wu R, Freeman A J and Olson G B 1996 Phys. Rev. B 53 7504
[22] Wachowicz E, Ossowski T and Kiejna A 2010 Phys. Rev. B 81 094104
[23] Bhattacharya S K, Tanaka S, Shiihara Y and Kohyama M 2013 J. Phys.: Condens. Matter 25 135004
[24] Ossowski T, Wachowicz E and Kiejna A 2009 J. Phys.: Condens. Matter 21 485002
[25] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[26] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[27] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 J. Mod. Phys. 64 1045
[28] Vanderbilt D 1990 Phys. Rev. B 41 7892
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Griffith A A 1921 Philos. T. Roy. Soc. A 221 163
[32] Yang R, Zhao D L, Wang Y M, Wang S Q, Ye H Q and Wang C Y 2001 Acta Mater. 49 1079
[33] Yang R, Wang Y M, Ye H Q and Wang C Y 2001 J. Phys.: Condens. Matter 13 4485
[34] Messmer R P and Briant C L 1982 Acta Metall. 30 457
[35] Seah M P 1975 Surf. Sci. 53 168
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[5] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[6] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[7] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[8] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[9] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[10] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[11] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[12] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[13] First-principles study on optic-electronic properties of doped formamidinium lead iodide perovskite
Xin-Feng Diao(刁心峰), Yan-Lin Tang(唐延林), Quan Xie(谢泉). Chin. Phys. B, 2019, 28(1): 017802.
[14] Pressure-induced enhancement of optoelectronic properties in PtS2
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2018, 27(6): 066201.
[15] Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛). Chin. Phys. B, 2018, 27(4): 047802.
No Suggested Reading articles found!