CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Kink effect in current–voltage characteristics of a GaN-based high electron mobility transistor with an AlGaN back barrier |
Ma Xiao-Hua (马晓华)a b, Lü Min (吕敏)a b, Pang Lei (庞磊)c, Jiang Yuan-Qi (姜元祺)a b, Yang Jing-Zhi (杨靖治)a b, Chen Wei-Wei (陈伟伟)a b, Liu Xin-Yu (刘新宇)c |
a School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China; b Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; c Key Laboratory of Microelectronics Device & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract The kink effect in current–voltage (IV) characteristic s seriously deteriorates the performance of a GaN-based HEMT. Based on a series of direct current (DC) IV measurements in a GaN-based HEMT with an AlGaN back barrier, a possible mechanism with electron-trapping and detrapping processes is proposed. Kink-related deep levels are activated by a high drain source voltage (Vds) and located in a GaN channel layer. Both electron trapping and detrapping processes are accomplished with the help of hot electrons from the channel by impact ionization. Moreover, the mechanism is verified by two other DC IV measurements and a model with an expression of the kink current.
|
Received: 05 May 2013
Revised: 28 May 2013
Accepted manuscript online:
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
79.20.Ap
|
(Theory of impact phenomena; numerical simulation)
|
|
Fund: Project supported by the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0915). |
Corresponding Authors:
Ma Xiao-Hua
E-mail: xhma@xidian.edu.cn
|
About author: 73.61.Ey; 72.20.Jv; 79.20.Ap |
Cite this article:
Ma Xiao-Hua (马晓华), Lü Min (吕敏), Pang Lei (庞磊), Jiang Yuan-Qi (姜元祺), Yang Jing-Zhi (杨靖治), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇) Kink effect in current–voltage characteristics of a GaN-based high electron mobility transistor with an AlGaN back barrier 2014 Chin. Phys. B 23 027302
|
[1] |
Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T and Kuzauhara M 2003 IEEE Trans. Electron Dev. 24 289
|
[2] |
Sheppard S T, Doverspike K, Pribble W L, Allen S T, Palmour J W, Kehias L T and Jenkins T J 1999 IEEE Electron Dev. Lett. 20 161
|
[3] |
Moon J S, Micovic M, Janke P, Hashimoto P, Wong W S, Widman R D, McCray L, Kurdoghlian A and Nguyen C 2001 Electron. Lett. 37 528
|
[4] |
Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Dev. Lett. 25 117
|
[5] |
Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 560
|
[6] |
Binary S C, Ikossi K, Roussos J A, Kruppa W, Park D, Dietrich H B, Koleske D D, Wickenden A E and Henry R L 2001 IEEE Trans. Electron Dev. 48 465
|
[7] |
Kato K, Wada T and Taniguchi K 1985 IEEE Trans. Electron Dev. 32 458
|
[8] |
Zeghbroeck B J, Patrick W, Meier H and Vettiger P 1987 IEEE Electron Dev. Lett. 8 188
|
[9] |
Fujishiro H I, Inokuchi K, Nishi S and Sano Y 1989 Jpn. J. Appl. Phys. 28 1734
|
[10] |
Haruyama J, Negishi H, Nishimura Y and Nashimoto Y 1997 IEEE Trans. Electron Dev. 44 25
|
[11] |
Somerville M H and Del Alamo J A 1996 IEEE Electron Dev. Lett. 17 473
|
[12] |
Somerville M H, Ernst A and Del Alamo J A 2000 IEEE Trans. Electron Dev. 47 922
|
[13] |
Suemitsu T, Yokoyama H, Ishii T, Enoki T, Meneghesso G and Zanoni E 2002 IEEE Trans. Electron Dev. 49 1694
|
[14] |
Kunihiro K, Yano H, Goto N and Ohno Y 1993 IEEE Trans. Electron Dev. 40 493
|
[15] |
Canali C, Paccagnella A, Magistrali F, Sangalli M, Tedesco C and Zanoni E 1991 IEE Proc.: Circ. Dev. Sys. 138 104
|
[16] |
Mazzanti A, Verzellesi G, Canali C, Meneghesso G and Zanoni E 2002 IEEE Electron Dev. Lett. 23 383
|
[17] |
Binari S C, Ikossi K, Roussos J A, Kruppa W, Doewon Park, Dietrich H B, Koleske D D, Wichenden A E and Henry R L 2001 IEEE Trans. Electron Dev. 48 465
|
[18] |
Meneghesso G, Rossi F, Salviati G and Uren M J 2010 Appl. Phys. Lett. 96 263512
|
[19] |
Crupi G, Avolio G, Raffo A, Barmuta P, Schreurs M M P D, Caddemi A and Vannini G 2011 Solid-State Electron. 64 28
|
[20] |
Ma X H, Ma J G, Yang L Y, He Q, Jiao Y, Ma P and Hao Y 2011 Chin. Phys. B 20 067304
|
[21] |
Brunel L, Malbert N, Curutchet A and Labat N 2012 42nd European Solid-State Dev. Research Conference (ESSDERC), 17–21 September, 2012, Bordeaux, France, p. 270
|
[22] |
Pu Y, Pang L, Chen X J, Yuan T T, Luo W J and Liu X Y 2011 Chin. Phys. B 20 097305
|
[23] |
Binari S C, Klein P B and Kazior T E 2002 Proc. IEEE 90 1048
|
[24] |
Wang X H, Pang L, Wang J H, Yuan T T, Luo W J, Chen X J and Liu X Y 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology, 19–20 April, 2012, Chengdu, China, p. 4
|
[25] |
Suemitsu T, Enoki T, Sano N, Tomizawa M and Ishii Y 1998 IEEE Trans. Electron Dev. 45 2390
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|