Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 026201    DOI: 10.1088/1674-1056/23/2/026201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Elastic and thermodynamic properties of vanadium nitride under pressure and the effect of metallic bonding on its hardness

Pu Chun-Ying (濮春英)a, Zhou Da-Wei (周大伟)a, Bao Dai-Xiao (包代小)b, Lu Cheng (卢成)a, Jin Xi-Lian (靳希联)c, Su Tai-Chao (宿太超)d, Zhang Fei-Wu (张飞武)e
a College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China;
b The School Hospital, Nanyang Normal University, Nanyang 473061, China;
c State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
d Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
e Nanochemistry Research Institute, Curtin University, Perth, WA-6845, Australia
Abstract  By the particle-swarm optimization method, it is predicted that tetragonal P42mc, I41md, and orthorhombic Amm2 phases of vanadium nitride (VN) are energetically more stable than NaCl-type structure at 0 K. The enthalpies of the predicted three new VN phases, along with WC, NaCl, AsNi, CsCl type structures, are calculated each as a function of pressure. It is found that VN exhibits the WC-to-CsCl type phase transition at 256 GPa. For the considered seven crystallographic VN phases, the structures, elastic constants, bulk moduli, shear moduli, and Debye temperatures are investigated. Our calculated equilibrium structural parameters are in very good agreement with the available experimental results and the previous theoretical results for the NaCl phase. The Debye temperatures of VN predicted three novel phases, which are all higher than those of the remaining structures. The elastic constants, thermodynamic properties, and elastic anisotropies of VN under pressure are obtained and the mechanical stabilities are analyzed in detail based on the mechanical stability criteria. Moreover, the effect of metallic bonding on the hardness of VN is also investigated, which shows that VNs in P42mc, I41md, and Amm2 phases are potential superhard phases. Further investigation on the experimental level is highly recommended to confirm our calculations presented in this paper.
Keywords:  vanadium nitride      elastic constants      thermodynamic properties      hardness  
Received:  23 March 2013      Revised:  27 June 2013      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  64.60.Bd (General theory of phase transitions)  
  67.25.bd (Thermodynamic properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247222, 51001042, and 11174102), the Henan Joint Funds of the National Natural Science Foundation of China (Grant No. U1304612), the Natural Science Foundation of Education Department of Henan Province, China (Grant Nos. 2011B140015 and 2010B140012), the China Postdoctoral Science Foundation (Grant No. 20110491317), and the Nanyang Normal University Science Foundation, China (Grant Nos. ZX2012018 and ZX2013019).
Corresponding Authors:  Pu Chun-Ying     E-mail:  puchunying@126.com
About author:  62.20.D-; 64.60.Bd; 67.25.bd

Cite this article: 

Pu Chun-Ying (濮春英), Zhou Da-Wei (周大伟), Bao Dai-Xiao (包代小), Lu Cheng (卢成), Jin Xi-Lian (靳希联), Su Tai-Chao (宿太超), Zhang Fei-Wu (张飞武) Elastic and thermodynamic properties of vanadium nitride under pressure and the effect of metallic bonding on its hardness 2014 Chin. Phys. B 23 026201

[1] Faucher M, Fournier T, Pannetier B, Thirion C, Wernsdorfer W, Villegier J C and Bouchiat V 2002 Physica C 368 211
[2] Durand D, Dalrymple B, Eaton L, Spargo J, Wire M, Dowdy M and Ressler M 1999 Appl. Supercond. 6 741
[3] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[4] Zhang M, Wang M, Cui T, Ma Y M, Niu Y L and Zou G T 2008 J. Phys. Chem. Solids 69 2096
[5] Li Y W, Wang H, Li Q, Ma Y M, Cui T and Zou G T 2009 Inorg. Chem. 48 9904
[6] Carlson O N, Smith J F and Hafziger R H 1986 Metall. Trans. A 17 1647
[7] Neckel A, Rastl P, Eibler R, Weinberger P and Schwartz K 1976 J. Phys. C 9 579
[8] Weber W, Roedhammer P, Pintschovius L, Reichardt W, Gompf F and Christensen A N 1979 Phys. Rev. Lett. 43 868
[9] Ivashchenko V I and Turchi P E A 2008 Phys. Rev. B 78 224113
[10] Ivashchenko V I, Turchi P E A, Shevchenko V I and Olifan E I 2011 Phys. Rev. B 84 174108
[11] Hugosson H W, Eriksson O, Nordstrom L, Jansson U, Fast L, Delin A, Wills J M and Johansson B 1999 J. Appl. Phys. 86 3758
[12] Hao A M, Yang X C, Zhang L X and Zhang Q Z 2012 Adv. Mater. Res. 551 2805
[13] Wang Y C, Lü J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[14] Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
[15] Lin J S, Qteish A, Payne M C and Heine V 1993 Phys. Rev. B 47 4174
[16] Vanderbilt D 1990 Phys. Rev. B 41 7892
[17] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[18] Zhao B R, Chen L and Luc H L 1984 Phys. Rev. B 29 6198
[19] Fulcher B D, Cui X Y, Delley B and Stampfl C 2012 Phys. Rev. B 85 184106
[20] Stampfl C, Mannstadt W, Asahi R and Freeman A J 2001 Phys. Rev. B 63 155106
[21] Kim J O, Achenbach J D, Mirkarimi P B, Shinn M and Barnett S A 1992 J. Appl. Phys. 72 1805
[22] Nye J F 1985 Physics Properties of Crystals (Oxford: Oxford University Press)
[23] Steinle-Neumann G, Stixrude L and Cohen R E 1999 Phys. Rev. B 60 791
[24] Ravindran P, Fast Lars, Korzhayyi P A, Johansson B, Wills J M and Eriksson O 1998 J. Appl. Phys. 84 4891
[25] Ichitsubo T, Koumoto D, Hirao M, Tanaka K, Osawa M, Yokokawa and Harada H 2003 Acta. Mater. 51 4863
[26] Gou H Y, Li H, Zhang J W and Gao F M 2008 Appl. Phys. Lett. 92 241901
[27] Szymanski A and Szymanski J M 1989 Hardness Estimation of Minerals Rocks and Ceramic Materials (Amsterdam: Elsevier)
[28] Teter D M 1998 MRS Bull. 23 22
[29] Wang Z H, Kuang X Y, Zhong M M, Lu P, Mao A J and Huang X F 2011 Europhys. Lett. 95 66005
[30] Jiang X, Zhao J J and Jiang X 2011 Comput. Mater. Sci. 50 2287
[1] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[2] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[3] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[4] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[5] Progress in functional studies of transition metal borides
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉). Chin. Phys. B, 2021, 30(10): 108103.
[6] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[7] Composition effect on elastic properties of model NiCo-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026102.
[8] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[9] Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛). Chin. Phys. B, 2018, 27(4): 047802.
[10] Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations
S Benlamari, H Bendjeddou, R Boulechfar, S Amara Korba, H Meradji, R Ahmed, S Ghemid, R Khenata, S Bin Omran. Chin. Phys. B, 2018, 27(3): 037104.
[11] First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds
Shanyu Quan(权善玉), Xudong Zhang(张旭东), Cong Liu(刘聪), Wei Jiang(姜伟). Chin. Phys. B, 2018, 27(12): 126201.
[12] First-principles calculations on elastic, magnetoelastic, and phonon properties of Ni2FeGa magnetic shape memory alloys
Wangqiang He(贺王强), Houbing Huang(黄厚兵), Zhuhong Liu(柳祝红), Xingqiao Ma(马星桥). Chin. Phys. B, 2018, 27(1): 016201.
[13] Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z=S, Se, and Te)
Hai-Ming Huang(黄海铭), Chuan-Kun Zhang(张传坤), Ze-Dong He(贺泽东), Jun Zhang(张俊), Jun-Tao Yang(杨俊涛), Shi-Jun Luo(罗时军). Chin. Phys. B, 2018, 27(1): 017103.
[14] Elastic, vibrational, and thermodynamic properties of Sr10(PO4)6F2 and Ca10(PO4)6F2 from first principles
Xianggang Kong(孔祥刚), Zhihong Yuan(袁志红), You Yu(虞游), Tao Gao(高涛), Shenggui Ma(马生贵). Chin. Phys. B, 2017, 26(8): 086301.
[15] First-principles study of the new potential photovoltaic absorber: Cu2MgSnS4 compound
Belmorsli Bekki, Kadda Amara, Mohammed El Keurti. Chin. Phys. B, 2017, 26(7): 076201.
No Suggested Reading articles found!