CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Elastic, vibrational, and thermodynamic properties of Sr10(PO4)6F2 and Ca10(PO4)6F2 from first principles |
Xianggang Kong(孔祥刚)1, Zhihong Yuan(袁志红)1, You Yu(虞游)2, Tao Gao(高涛)1,3, Shenggui Ma(马生贵)1 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China;
3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China |
|
|
Abstract The electronic, elastic, vibrational, and thermodynamic properties of Sr10(PO4)6F2(Sr-FAP) and Ca10(PO4)6F2(Ca-FAP) are systematically investigated by the first-principles calculations. The calculated electronic band structure indicates that the Sr-FAP and Ca-FAP are insulator materials with the indirect band gap of 5.273 eV and 5.592 eV, respectively. The elastic constants are obtained by the “stress-strain” method, and elastic modulus are further evaluated and discussed. The vibrational properties, including the phonon dispersion curves, the phonon density of states, the Born effective charge, and associated longitudinal optical and transverse optical (LO-TO) splitting of optical modes, as well as the phonon frequencies at zone-center are obtained within the linear-response approach. Substitution of Ca by Sr causes phonon frequencies to shift to lower values as expected due to the mass effect. Additionally, some phonon-related thermodynamic properties, such as Helmholtz free energy F, internal energy E, entropy S, and specific heat CV of Sr-FAP and Ca-FAP are predicted with the harmonic approximation. The present calculated results of two apatites are consistent with the reported experimental and theoretical results.
|
Received: 13 April 2017
Revised: 15 May 2017
Accepted manuscript online:
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
65.40.Ba
|
(Heat capacity)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
65.40.gd
|
(Entropy)
|
|
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034202) and the National Natural Science Foundation of China (Grant No. 11305147). |
Corresponding Authors:
Tao Gao
E-mail: gaotao@scu.edu.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Xianggang Kong(孔祥刚), Zhihong Yuan(袁志红), You Yu(虞游), Tao Gao(高涛), Shenggui Ma(马生贵) Elastic, vibrational, and thermodynamic properties of Sr10(PO4)6F2 and Ca10(PO4)6F2 from first principles 2017 Chin. Phys. B 26 086301
|
[1] |
Gross K A and Berndt C C 2002 Reviews in Mineralogy and Geochemistry 48 631
|
[2] |
Kim H W, Lee S Y, Bae C J, Noh Y J, Kim H E, Kim H M and Ko J S 2003 Biomaterials 24 3277
|
[3] |
Weber W J, Ewing R C, Catlow C, Rubia T D, Hobbs L, Kinoshita C, Matzke H, Motta A, Nastasi M and Salje E 1998 J. Mater. Res. 13 1434
|
[4] |
Hendricks S, Jefferson M and Mosley V 1932 Zeitschrift für Kristallographie-Crystalline Materials 81 352
|
[5] |
Adams D M, Gardner I R 1974 J. Chem. Soc. Dalton Trans. 14 1505
|
[6] |
Majid C and Hussain M 1996 Proceedings of the Pakistan Academy of Sciences 33 11
|
[7] |
Balan E, Delattre S, Roche D, Segalen L, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Brouder C and Salje E K 2011 Phys. Chem. Miner. 38 111
|
[8] |
Boyer L L and Fleury P A 1974 Phys. Rev. B 9 2693
|
[9] |
Dachs E, Harlov D and Benisek A 2010 Phys. Chem. Miner. 37 665
|
[10] |
Devarajan V and Klee W E 1981 Phys. Chem. Miner. 7 35
|
[11] |
EganJr E P, Wakefield Z T and Elmore K L 1951 J. Am. Chem. Soc. 73 5581
|
[12] |
Menéndez-Proupin E, Cervantes-Rodríguez S, Osorio-Pulgar R, Franco-Cisterna M, Camacho-Montes H and Fuentes M E 2011 J. Mech. Behavior Biomed. Mater. 4 1011
|
[13] |
Rulis P, Ouyang L and Ching W Y 2004 Phys. Rev. B 70 155104
|
[14] |
Fleche J L 2002 Phys. Rev. B 65 245116
|
[15] |
Leroy N and Bres E 2001 European Cells and Materials 2 36
|
[16] |
Chinthaka Silva G W, Hemmers O, Czerwinski K R and Lindle D W 2008 Inorg. Chem. 47 7757
|
[17] |
Jay E E, Mallinson P M, Fong S K, Metcalfe B L and Grimes R W 2011 J. Mater. Sci. 46 7459
|
[18] |
Rakovan J F and Hughes J M 2000 The Canadian Mineralogist 38 839
|
[19] |
Li Z Y, Lam W M, Yang C, Xu B, Ni G X, Abbah S A, Cheung K M C, Luk K D K and Lu W W 2007 Biomaterials 28 1452
|
[20] |
O'Donnell M, Fredholm Y, De Rouffignac A and Hill R 2008 Acta Biomaterialia. 4 1455
|
[21] |
Shpak A, Karbovskii V and Kurgan N 2007 J. Electron. Spectrosc. Relat. Phenom. 156 457
|
[22] |
Yuan X. Shen D Z, Wang X Q, Wang X Y, Wang R J and Shen G Q 2007 Journal of Wuhan University of Technology-Mater. Sci. Ed. 22 205
|
[23] |
Pekov I V, Britvin S N, Zubkova N V, Pushcharovsky D Y, Pasero M and Merlino S 2010 European Journal of Mineralogy 22 869
|
[24] |
Brenier A 2001 J. Lumin. 92 199
|
[25] |
DeLoach L D, Payne S A, Smith L K, Kway W L and Krupke W F 1994 J. Opt. Soc. Am. B 11 269
|
[26] |
Fang H S, Qiu S R, Zheng L L, Schaffers K I, Tassano J B, Caird J A and Zhang H 2008 J. Crystal Growth 310 3825
|
[27] |
Qiao X B and Seo H J 2014 J. Alloys Compd. 615 270
|
[28] |
Wang Q P, Zhao S Z, Zhang X Y, Sun L K and Zhang S J 1996 Opt. Commun. 128 73
|
[29] |
Nagpure I M, Dhoble S J, Mohapatra M, Kumar V, Pitale S S, Ntwaeaborwa O M, Godbole S V and Swart H C 2011 J. Alloys Compd. 509 2544
|
[30] |
Gloster L A W, Cormont P, Cox A M, King T and Chai B 1998 Opt. Commun. 146 177
|
[31] |
Chai B Y, Hao L Y, Mao X J, Xu X, Li X K, Jiang B X and Zhang L 2016 J. Am. Ceram. Soc. 99 1498
|
[32] |
Swafford S H, Holt E M 2002 Solid State Sci. 4 807
|
[33] |
Schulte A, Buchter S C and Chai B H 1995 Proc. SPIE 34 2380
|
[34] |
Bonner C E, Chess C C, Meegoda C, Stefanos S and Loutts G B 2004 Opt. Mater. 26 17
|
[35] |
Zhai S M, Shieh S R, Xue W H and Xie T Q 2015 Phys. Chem. Miner. 42 579
|
[36] |
Aissa A, Badraoui B, Thouvenot R and Debbabi M 2004 Eur. J. Inorg. Chem. 2004 3828
|
[37] |
Chernorukov N, Knyazev A and Bulanov E 2011 Inorg. Mater. 47 172
|
[38] |
Persson Kristin 2017 Materials Project, 1281477, 1280693
|
[39] |
Rabone J A L and De Leeuw N 2006 J. Comput. Chem. 27 253
|
[40] |
Goryaeva A M, Urusov V S and Eremin N N 2013 Eur. J. Mineral. 25 947
|
[41] |
Balachandran P V, Rajan K and Rondinelli J M 2014 Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 70 612
|
[42] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[43] |
Slepko A and Demkov A A 2011 Phys. Rev. B 84 134108
|
[44] |
Yao H Z, Ouyang L Z and Ching W Y 2007 J. Am. Ceram. Soc. 90 3194
|
[45] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[46] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[47] |
Gonze X and Lee C 1997 Phys. Rev. B 55 10355
|
[48] |
Wang Y, Shang S L, Fang H Z, Liu Z K and Chen L Q 2016 npj Computat. Mater. 2 16006
|
[49] |
Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
|
[50] |
Togo A and Tanaka I 2015 Scripta Materialia 108 1-5
|
[51] |
Momma K and Izumi F 2011 J. Appl. Crystallography 44 1272
|
[52] |
Li C X, Duan Y H and Hu W C 2015 J. Alloys Compd. 619 66
|
[53] |
Sha M C, Li Z and Bradt R C 1994 J. Appl. Phys. 75 7784
|
[54] |
Hill R 1952 Proc. Phys. Soc. Section A 65 349
|
[55] |
Cang Y P, Lian S B, Yang H M and Chen D 2016 Chin. Phys. Lett. 33 066301
|
[56] |
Haines J, Leger J and Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1
|
[57] |
Lee C and Gonze X 1995 Phys. Rev. B 51 8610
|
[58] |
Boyer L L and Fleury P A 1974 Phys. Rev. B 9 2693
|
[59] |
Devarajan V and Klee W E 1981 Phys. Chem. Miner. 7 35
|
[60] |
Rulis P, Ouyang L and Ching W Y 2004 Phys. Rev. B 70 155104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|