Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 026104    DOI: 10.1088/1674-1056/23/2/026104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel

Sun Shi-Cheng (孙世成)a b, Sun Gui-Xun (孙贵训)a, Jiang Zhong-Hao (江忠浩)a, Ji Chang-Tao (季长涛)b, Liu Jia-An (刘家安)a, Lian Jian-She (连建设)a
a Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun 130025, China;
b Key Laboratory of Advanced Structural Materials, Ministry of Education, College of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China
Abstract  Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m=0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.
Keywords:  high nitrogen austenitic stainless steel      cold deformation      nanoindentation tests      creep behavior  
Received:  07 August 2013      Revised:  23 October 2013      Accepted manuscript online: 
PACS:  61.82.Bg (Metals and alloys)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  62.90.+k (Other topics in mechanical and acoustical properties of condensed matter)  
  62.20.Hg (Creep)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 51371089 and 51201068) and the National Key Basic Research and Development Program of China (Grant No. 2010CB631001).
Corresponding Authors:  Jiang Zhong-Hao, Ji Chang-Tao     E-mail:  jzh@jlu.edu.cn;jichangtao@mail.ccut.edu.cn
About author:  61.82.Bg; 81.40.Ef; 62.90.+k; 62.20.Hg

Cite this article: 

Sun Shi-Cheng (孙世成), Sun Gui-Xun (孙贵训), Jiang Zhong-Hao (江忠浩), Ji Chang-Tao (季长涛), Liu Jia-An (刘家安), Lian Jian-She (连建设) Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel 2014 Chin. Phys. B 23 026104

[1] Dai Q X, Yuan Z Z, Chen X and Chen K M 2009 Mater. Sci. Eng. A 517 257
[2] Knutsen R D, Lang C I and Basson J A 2004 Acta Mater. 52 2407
[3] Hong C M, Shi J, Sheng L Y, Cao W C, Hui W J and Dong H 2011 Mater. Des. 32 3711
[4] Salahinejad E, Amini R, Marasi M and Hadianfard M J 2010 Mater. Des. 31 2259
[5] Lee T H, Oh C S, Kim S J and Takaki S 2007 Acta Mater. 55 3649
[6] Zhang G L, Wang J L, Liu Y F, Liu C Z and Yang S Z 2004 Chin. Phys. 13 1309
[7] Zhang Y, Xie L J, Zhang J M and Xu K W 2011 Chin. Phys. B 20 026102
[8] Wang H, Liu G Q and Luan J H 2012 Acta Phys. Sin. 61 048102 (in Chinese)
[9] Hong C M, Shi J, Sheng L Y, Cao W Q, Hui W J and Dong H 2011 J. Mater. Sci. 46 5097
[10] Fréchard S, Redjaïmia A, Lach E and Lichtenberger A 2006 Mater. Sci. Eng. A 415 219
[11] Liu Y L, Jin S and Zhang Y 2012 Chin. Phys. B 21 016105
[12] Simmons J W 1995 Scripta Metallet Mater. 32 265
[13] Dorofeev G A, Sapegina I V, Lad’yanov V I, Pushkarev B E, Pechina E A and Prokhorov D V 2012 The Physics of Metals and Metallography 113 963
[14] Yuan Z Z, Dai Q X, Cheng X N and Chen K M 2007 Mater. Charact. 58 87
[15] Yuan Z Z, Dai Q X, Cheng X N, Chen K M, Pan L and Wang A D 2006 Mater. Charact. 56 79
[16] Schino A D and Kenny J M 2003 Mater. Lett. 57 1830
[17] Nakada N, Hirakawa N, Tsuchiyama T and Takaki S 2007 Scr. Mater. 57 153
[18] Choi J Y, Ji J H, Hwang S W and Park K T 2011 Mater. Sci. Eng. A 528 6012
[19] Jandová D, Řehoř J and Nový Z 2004 J. Mater. Process. Technol. 157–158 523
[20] Balachandran G, Bhatia M L, Ballal N B and Rao P K 2000 ISIJ Int. 40 491
[21] Saller G, Hahn K S, Scheu C and Clemens H 2006 Mater. Sci. Eng. A 427 246
[22] Singh B B, Sivakumar K and Bhat T B 2009 Int. J. Impact Eng. 36 611
[23] Stolyarov V V, Zhu Y T, Alexandrov I V, Lowe T C and Valiev R Z 2003 Mater. Sci. Eng. A 343 43
[24] Wang S T, Yang K, Shan Y Y and Li L F 2007 Acta Metall. Sin. 43 171
[25] Wang W, Yan W, Yang K, Shan Y Y and Jiang Z H 2010 J. Mater. Eng. Perform. 19 1214
[26] Shen Y F, Lu L, Dao M and Suresh S 2006 Scr. Mater. 55 319
[27] Dao M, Lu L, Shen Y F and Suresh S 2006 Acta Mater. 54 5421
[28] Lu L, Schwaiger R, Shan Z W, Dao M, Lu K and Suresh S 2005 Acta Mater. 53 2169
[29] Chen J, Shi Y N and Lu K 2005 J. Mater. Res. 20 2955
[30] Lüthy H, White R A and Sherby O D 1979 Mater. Sci. Eng. 39 211
[31] Coble R L 1963 J. Appl. Phys. 34 1679
[32] Lucas B N and Oliver W C 1999 Metall. Mater. Trans. A 30 601
[33] Asaro R J and Suresh S 2005 Acta Mater. 53 3369
[34] Konopka K, Mizera J and Wyrzykowski J W 2000 J. Mater. Process. Technol. 99 255
[35] Field D P, True B W, Lillo T M and Flinn J E 2004 Mater. Sci. Eng. A 372 173
[36] Imran M, Hussain F, Rashid M and Ahmad S A 2012 Chin. Phys. B 21 116201
[37] Mu J W, Sun S C, Jiang Z H, Lian J S and Jiang Q 2013 Chin. Phys. B 22 037303
[38] Mu J W, Jiang Z H, Zheng W T, Tian H W, Lian J S and Jiang Q 2012 J. Appl. Phys. 111 063506
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[4] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[5] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[6] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[7] Molecular dynamics simulations of dopant effectson lattice trapping of cracks in Ni matrix
Shulan Liu(刘淑兰) and Huijing Yang(杨会静). Chin. Phys. B, 2021, 30(11): 116107.
[8] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[9] Corrosion behavior of high-level waste container materials Ti and Ti-Pd alloy under long-term gamma irradiation in Beishan groundwater
Qianglin Wei(魏强林), Yuhong Li(李玉红), Yanliang Huang(黄彦良), Dongyan Yang(杨冬燕), Bo Yang(杨波), and Yibao Liu(刘义保). Chin. Phys. B, 2021, 30(5): 056109.
[10] Process modeling gas atomization of close-coupled ring-hole nozzle for 316L stainless steel powder production
Peng Wang(汪鹏), Jing Li(李静), Hen-San Liu(刘恒三), Xin Wang(王欣), Bo-Rui Du(杜博睿), Ping Gan(甘萍), Shi-Yuan Shen(申世远), Bin Fan(范斌), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 057502.
[11] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[12] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[13] Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(12): 126101.
[14] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[15] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
No Suggested Reading articles found!