Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127802    DOI: 10.1088/1674-1056/23/12/127802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Terahertz time-domain spectroscopy of a simulated pore structure to probe particle size and porosity of porous rock

Dong Chen (董晨)a b, Bao Ri-Ma (宝日玛)b, Zhao Kun (赵昆)a b c, Xu Chang-Hong (许长虹)b, Jin Wu-Jun (金武军)b, Zhong Shou-Xian (钟寿仙)c
a State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
b Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China;
c Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, China Petroleum and Chemical Industry Federation (CPCIF), Beijing 100723, China
Abstract  The particle sizes and porosities of simulated pore structures are probed by terahertz time-domain spectroscopy. A double-peak time-domain spectrum phenomenon is observed when the terahertz (THz) pulses illuminated a pore and a particle. The amplitudes of the two peaks depend strongly and monotonically on the particle size and porosity. A model is used to study the phenomenon, and the computational results agreed with the experimental measurements. These measurements indicate the terahertz spectroscopic behaviors of pores and particles, suggesting that terahertz spectroscopy can be used as a noncontact probe of porosity.
Keywords:  reservoir simulation      physical optics      terahertz spectroscopy      polymer  
Received:  17 July 2014      Revised:  01 September 2014      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.30.Jw (Organic compounds, polymers)  
  78.47.jh (Coherent nonlinear optical spectroscopy)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2014CB744302), the Specially Funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005), and the Beijing Natural Science Foundation (Grant No. 4122064).
Corresponding Authors:  Zhao Kun     E-mail:  zhk@cup.edu.cn

Cite this article: 

Dong Chen (董晨), Bao Ri-Ma (宝日玛), Zhao Kun (赵昆), Xu Chang-Hong (许长虹), Jin Wu-Jun (金武军), Zhong Shou-Xian (钟寿仙) Terahertz time-domain spectroscopy of a simulated pore structure to probe particle size and porosity of porous rock 2014 Chin. Phys. B 23 127802

[1]Javadpour F, Fisher D and Unsworth M 2007 J. Canadian Petro. Tech. 46 55
[2]Westphal H, Surholt I, Kiesl C, Thern H F, and Kruspe T 2005 Pure Appl. Geophys 162 549
[3]Biswal B, Held R J, Khanna V, Wang J and Hilfer R 2009 Phys. Rev. E 80 041301
[4]Tariq F, Haswell R, Lee P D and McComb D W 2011 Acta Mater. 59 2109
[5]Martinez-Angeles R and Perez-Rosales C 2000 SPE International Petroleum Conference and Exhibition in Mexico, February 1-3, 2000, Villahermosa, Mexico, 58990MS
[6]Lamea O, Belleta D, Michielb M D and Bouvard, D 2004 Acta Mater. 52 977
[7]Bernard D, Gendron D, Heintz J M, Bord'ere S and Etourneau J 2005 Acta Mater. 53 121
[8]Upadhya P C, Shena Y C, Daviesb A G and Linfield E H 2004 Vib. Spectrosc. 35 139
[9]Nishizawaa J, Sasakia T, Sutoa K, Yamadab T, Tanabeb T, Tannoa T, Sawaic T and Miurac Y 2005 Opt. Commun. 244 469
[10]Zhang X C, Hu B B, Darrow J T and Auston D H 1990 Appl. Phys. Lett. 56 1011
[11]Heilweil E J, Maslar J E, Kimes W A, Bassim N D and Schenck P K 2009 Opt. Lett. 34 1360
[12]Baxter J B and Glenn G W 2011 Anal. Chem. 83 4342
[13]Globus T, Woolard D, Crowe T W, Khromova1 T, Gelmont B and Hesler J 2006 J. Phys. D: Appl. Phys. 39 3405
[14]Scales A J and Batzle M 2006 Appl. Phys. Lett. 88 062906
[15]Al-Douseri F M, Chen Y Q and Zhang X C 2006 Int. J. Infr. Millim. Waves 27 481
[16]Ikeda T, Matsushita1 A, Tatsuno M, Minami Y, Yamaguchi M, Yamamoto K, Tani M and Hangyo M 2005 Appl. Phys. Lett. 87 034105
[17]Leng W X, Ge L N, Xu S S, Zhan H L and Zhao K 2014 Chin. Phys. B 23 107804
[18]Jin W J, Li T, Zhao K and Zhao H 2013 Chin. Phys. B 22 118701
[19]Zhao H, Zhao K, Tian L, Zhao S Q, Zhou Q L, Shi YL, Zhao D M and Zhang C L 2012 Sci. China: Series G 55 195
[20]Bao R M, Wu S X, Zhao K, Zheng L J and Xu C H 2013 Sci. China: Series G 56 1603
[21]Yan H G, Li X S, Chandra B, Tulevski G, Wu Y, Freitag M. Zhu W J, Avouris P and Xia F 2012 Nat. Nanotechnology 7 330
[22]Pastorelli G, Trafela T, Taday P F, Portieri A, Lowe D, Fukunaga K and Strlič M 2012 Anal. Bioanal. Chem. 403 1405
[23]Kaushik M, Ng B W H, Fischer B M and Abbott D T 2012 Appl. Phys. Lett. 100 011107
[24]Franz M, Fischer B M and Walther M 2008 Appl. Phys. Lett. 92 0211072
[25]Nam K M, Zurk L M and Schecklman S 2012 Prog. Electromagn. Res. B 38 205
[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[3] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[4] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[5] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[6] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[7] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[8] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[9] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[10] Driven injection of a polymer into a spherical cavity: A Langevin dynamics simulation study
Chao Wang(王超), Fan Wu(吴凡), Xiao Yang(杨肖), Ying-Cai Chen(陈英才), and Meng-Bo Luo(罗孟波). Chin. Phys. B, 2021, 30(10): 108202.
[11] Optically tuned dielectric characteristics of SrTiO3/Si thin film in the terahertz range
Bin Zou(邹斌), Qing-Qing Li(李晴晴), Yu-Ping Yang(杨玉平), and Hai-Zhong Guo(郭海中). Chin. Phys. B, 2021, 30(10): 107802.
[12] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[13] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[14] Dynamic recombination of triplet excitons in polymer heterojunctions
Ya-Dong Wang(王亚东), Jian-Jun Liu(刘建军), Xi-Ru Wang(王溪如), Yan-Xia Liu(刘艳霞), and Yan Meng(孟艳). Chin. Phys. B, 2020, 29(11): 117101.
[15] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
No Suggested Reading articles found!