Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 116101    DOI: 10.1088/1674-1056/23/11/116101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Determining the sum of flexoelectric coefficients in nematic liquid crystals by the capacitance method

Ye Wen-Jiang (叶文江)a, Xing Hong-Yu (邢红玉)a, Cui Wen-Jing (崔文静)b, Zhou Xuan (周璇)a, Sun Yu-Bao (孙玉宝)a, Zhang Zhi-Dong (张志东)a
a School of Sciences, Hebei University of Technology, Tianjin 300401, China;
b School of Physics, Nankai University, Tianjin 300071, China
Abstract  A detailed theoretical analysis of determining the sum of flexoelectric coefficients in nematic liquid crystals using the capacitance method is given. In the strong anchoring parallel aligned nematic (PAN) and hybrid aligned nematic (HAN) cells, the dependences of the capacitance on the sum of flexoelectric coefficients and the applied voltage are obtained by numerical simulations, and the distributions of the director and the electric potential for different applied voltages and flexoelectric coefficients are also given. Based on this theoretical analysis, we propose an experimental design for measuring the capacitance of a liquid crystal cell using the improved precision LCR meter E4980A (Agilent). Through comparing the experimental data with the simulated results, the sum of flexoeletric coefficients can be determined.
Keywords:  flexoelectricity      capacitance      parallel aligned nematic and hybrid aligned nematic liquid crystals  
Received:  10 April 2014      Revised:  17 September 2014      Accepted manuscript online: 
PACS:  61.30.Dk (Continuum models and theories of liquid crystal structure)  
  77.84.Nh (Liquids, emulsions, and suspensions; liquid crystals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274088, 11374087, and 11304074), the Natural Science Foundation of Hebei Province, China (Grant No. A2014202123), the Research Project of Hebei Education Department, China (Grant Nos. Z2012061 and QN2014130), the Science and Technology Plan Project of Hebei Province, China (Grant No. 134576260), and the Key Subject Construction Project of Hebei Province University, China.
Corresponding Authors:  Xing Hong-Yu     E-mail:  hongyu_xing@163.com

Cite this article: 

Ye Wen-Jiang (叶文江), Xing Hong-Yu (邢红玉), Cui Wen-Jing (崔文静), Zhou Xuan (周璇), Sun Yu-Bao (孙玉宝), Zhang Zhi-Dong (张志东) Determining the sum of flexoelectric coefficients in nematic liquid crystals by the capacitance method 2014 Chin. Phys. B 23 116101

[1] Blinov L M and Chigrinov V G 1994 Electrooptic Effects in Liquid Crystal Materials (Berlin: Springer) p. 190
[2] Meyer R B 1969 Phys. Rev. Lett. 22 918
[3] Castles F, Morris S M, Terentjev E M and Coles H J 2010 Phys. Rev. Lett. 104 157801
[4] Jákli A, Harden J, Sprunt S, Gleeson J T and Palffy-Muhoray P 2010 U.S. Patent 7832093 [2010-11-16]
[5] Bryan-Brown G P, Brown C V, Jones J C, Wood E L, Sage I C, Brett P and Rudin J 1997 SID97 Digest 37
[6] Chen J, Morris S M, Wilkinson T D, Freeman J P and Coles H J 2009 Opt. Express 17 7130
[7] Coles H, Morris S, Castles F, Gardiner D and Malik Q 2012 SID 2012 Digest 544
[8] Petrov A G1998 Physical Properties of Liquid Crystals: Nematics (London: INSPEC) p. 251
[9] Madhusudana N V 2013 Flexoelecticity in Liquid Crystals: Theory, Experiments and Applications (London: Imperial College Press) p. 33
[10] Deuling H J 1974 Solid State Commun. 14 1073
[11] Brown C V and Mottram N J 2003 Phys. Rev. E 68 031702
[12] Blinov L M, Barnik M I, Ozaki M, Shtykov N M and Yoshino K 2000 Phys. Rev. E 62 8091
[13] Takahashi T, Hashidate S, Nishijou H, Usui M, Kinura M and Akahane T 1998 Jpn. J. Appl. Phys. 37 1865
[14] Mazzulla A, Ciuchi F and Sambles J R 2001 Phys. Rev. E 64 021708
[15] Harden J, Mbanga B, Éber N, Fodor-Csorba K, Sprunt S, Gleeson J T and Jákli A 2006 Phys. Rev. Lett. 97 157802
[16] Harden J, Teeling R, Gleeson J T, Sprunt S and Jákli A 2008 Phys. Rev. E 78 031702
[17] Kischka C, Elston S J and Raynes E P 2008 Mol. Cryst. Liq. Cryst. 494 93
[18] Trabi C L, Smith C C T and Brown C V 2009 Mol. Cryst. Liq. Cryst. 509 378
[19] Tidey E K, Parry-Jones L A and Elston S J 2007 Liq. Cryst. 34 251
[20] Sykulska H M, Parry-Jones L A and Elston S J 2005 Mol. Cryst. Liq. Cryst. 436 267
[21] Kumar P, Marinov Y G, Hinov H P, Hiremath U S, Yelamaggad C V, Krishnamurthy K S and Petrov A G 2009 J. Phys. Chem. B 113 9168
[22] Salter P S, Tschierske C, Elston S J and Raynes E P 2011 Phys. Rev. E 84 031708
[23] Outrama B I and Elstona S J 2012 Liq. Cryst. 39 149
[24] Xing H Y, Ye W J, Wu N F, Zhang Z D and Xuan L 2012 Chin. Opt. Lett. 10 052301
[25] Castles F, Green S C, Gardiner D J, Morris S M and Coles H J 2012 AIP Adv. 2 022137
[26] Helfrich W 1971 Phys. Lett. A 35 393
[27] Castles F, Morris S M and Coles H J 2011 AIP Adv. 1 032120
[28] Castles F, Morris S M and Coles H J 2013 AIP Adv. 3 019102
[29] Patel J S and Meyer R B 1987 Phys. Rev. Lett. 58 1538
[30] Stephen William Morris 1985 Measurements of the Elastic Constants of a Liquid Crystal (MS Thesis) (Vancouver: University of British Columbia)
[31] Kirkman N T, Stirner T and Hagstona W E 2003 Liq. Cryst. 30 1115
[32] Xing H Y, YeWJ, Zhang Z D and Xuan L 2011 Commun. Theor. Phys. 55 939
[33] Brimicombe P D 2006 Fast-switching Nematic Liquid Crystal Devices (Ph.D. Thesis) (Linacre College: University of Oxford)
[34] Sugimura A, Luckhurst G R and Ou-yang Z C 1995 Phys. Rev. E 52 681
[35] Jewell S A and Sambles J R 2002 J. Appl. Phys. 92 19
[36] Panov V P, Balachandran R, Nagaraj M, Vij J K, Tamba M G, Kohlmeier A and Mehl G H 2011 Appl. Phys. Lett. 99 261903
[37] Nazarenko V G and Lavrentovich O D 1994 Phys. Rev. E 49 R990
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[3] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[4] Accurate capacitance-voltage characterization of organic thin films with current injection
Ming Chu(褚明), Shao-Bo Liu(刘少博), An-Ran Yu(蔚安然), Hao-Miao Yu(于浩淼), Jia-Jun Qin(秦佳俊), Rui-Chen Yi(衣睿宸), Yuan Pei(裴远), Chun-Qin Zhu(朱春琴), Guang-Rui Zhu(朱光瑞), Qi Zeng(曾琪), and Xiao-Yuan Hou(侯晓远). Chin. Phys. B, 2021, 30(8): 087301.
[5] Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武). Chin. Phys. B, 2021, 30(12): 127701.
[6] Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs
Zhi-Hang Tong(童志航), Peng Ding(丁芃), Yong-Bo Su(苏永波), Da-Hai Wang(王大海), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(1): 018501.
[7] How to characterize capacitance of organic optoelectronic devices accurately
Hao-Miao Yu(于浩淼), Yun He(何鋆). Chin. Phys. B, 2018, 27(6): 067202.
[8] Experimental design to measure the anchoring energy on substrate surface by using the alternating-current bridge
Hui-Ming Hao(郝慧明), Yao-Yao Liu(刘瑶瑶), Ping Zhang(张平), Ming-Lei Cai(蔡明雷), Xiao-Yan Wang(王晓燕), Ji-Liang Zhu(朱吉亮), Wen-Jiang Ye(叶文江). Chin. Phys. B, 2017, 26(8): 086102.
[9] Analytical capacitance model for 14 nm FinFET considering dual-k spacer
Fang-Lin Zheng(郑芳林), Cheng-Sheng Liu(刘程晟), Jia-Qi Ren(任佳琪), Yan-Ling Shi(石艳玲), Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进). Chin. Phys. B, 2017, 26(7): 077303.
[10] Capacitance extraction method for a gate-induced quantum dot in silicon nanowire metal-oxide-semiconductor field-effect transistors
Yan-Bing Xu(徐雁冰), Hong-Guan Yang(杨红官). Chin. Phys. B, 2017, 26(12): 127302.
[11] Singular variation property of elastic constants of piezoelectric ceramics shunted to negative capacitance
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Qi-Hu Li(李启虎). Chin. Phys. B, 2017, 26(12): 127702.
[12] Micro-light-emitting-diode array with dual functions of visible light communication and illumination
Yong Huang(黄涌), Zhi-You Guo(郭志友), Hui-Qing Sun(孙慧卿), Hong-Yong Huang(黄鸿勇). Chin. Phys. B, 2017, 26(10): 108504.
[13] Effect of cryogenic temperature characteristics on 0.18-μm silicon-on-insulator devices
Bingqing Xie(解冰清), Bo Li(李博), Jinshun Bi(毕津顺), Jianhui Bu(卜建辉), Chi Wu(吴驰), Binhong Li(李彬鸿), Zhengsheng Han(韩郑生), Jiajun Luo(罗家俊). Chin. Phys. B, 2016, 25(7): 078501.
[14] Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells
Lie-Feng Feng(冯列峰), Kun Zhao(赵昆), Hai-Tao Dai(戴海涛), Shu-Guo Wang(王树国), Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2016, 25(3): 037307.
[15] Equivalent distributed capacitance model of oxide traps onfrequency dispersion of C-V curve for MOS capacitors
Han-Han Lu(卢汉汉), Jing-Ping Xu(徐静平), Lu Liu(刘璐), Pui-To Lai(黎沛涛), Wing-Man Tang(邓咏雯). Chin. Phys. B, 2016, 25(11): 118502.
No Suggested Reading articles found!