Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107802    DOI: 10.1088/1674-1056/23/10/107802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photo-induced intramolecular electron transfer and intramolecular vibrational relaxation of rhodamine 6G in DMSO revealed by multiplex transient grating spectroscopy

Jiang Li-Lin (蒋礼林)a, Liu Wei-Long (刘伟龙)b, Song Yun-Fei (宋云飞)b, Sun Shan-Lin (孙山林)c
a School of Mechanical and Electronic Engineering, Hezhou University, Hezhou 542800, China;
b Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
c Department of Electronic Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
Abstract  Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G +) in DMSO are investigated by multiplex transient grating. Two major components are resolved in the dynamics of Rh6G+. The first component, with a lifetime τPIET=140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range τIVR=3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G + are quantitatively determined, and a better understanding of the relationship between these processes is obtained.
Keywords:  photo-induced intramolecular electron transfer      intramolecular vibrational relaxation      excited state      multiplex transient grating  
Received:  08 October 2013      Revised:  27 March 2014      Accepted manuscript online: 
PACS:  78.47.jj (Transient grating spectroscopy)  
  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  82.39.Jn (Charge (electron, proton) transfer in biological systems)  
  82.53.Uv (Femtosecond probes of molecules in liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21003033 and 21203047), the Guangxi Provincial Natural Science Foundation, China (Grant Nos. 2012GXNSFBA053012 and 2014GXNSFAA118019), and the Research Foundation of Education Bureau of Guangxi Zhuang Autonomous Region, China (Grant No. ZD2014127).
Corresponding Authors:  Jiang Li-Lin     E-mail:  jianglilin2009@gmail.com
About author:  78.47.jj; 78.47.J-; 82.39.Jn; 82.53.Uv

Cite this article: 

Jiang Li-Lin (蒋礼林), Liu Wei-Long (刘伟龙), Song Yun-Fei (宋云飞), Sun Shan-Lin (孙山林) Photo-induced intramolecular electron transfer and intramolecular vibrational relaxation of rhodamine 6G in DMSO revealed by multiplex transient grating spectroscopy 2014 Chin. Phys. B 23 107802

[1]Assmann J, Kling M and Abel B 2000 Angew. Chem. Int. Ed. 42 2226
[2]Kiba T, Sato S, Akimoto S, Kasajima T and Yamazaki I 2006 J. Photoch. Photobio. A 178 201
[3]Niedzwiedzki D M, Kajikawa T, Aoki K, Katsumura S and Frank H A 2013 J. Phys. Chem. B 117 6874
[4]Frontiera R R and Mathies R A 2011 Laser Photonics Rev. 5 102
[5]Fang C, Frontiera R R, Tran R and Mathies R A 2009 Nature 462 200
[6]Owrutsky J C, Raftery D and Hochstrasser R M 1994 Ann. Rev. Phys. Chem. 45 519
[7]Pigliucci A, Duvanel G, Daku L M L and Vauthey E 2007 J. Phys. Chem. A 111 6135
[8]Lauberau A and Kaiser W 1978 Rev. Mod. Phys. 50 607
[9]Fürstenberg A and Vauthey E 2007 Chimia 61 617
[10]Charvat A, Aβ mann J and Abel B 2001 J. Phys. Chem. A 105 5071
[11]Elles C G, Cox M J and Crima F F 2004 J. Chem. Phys. 120 6973
[12]Benten R V, Link O, Abel B and Schwarzer D 2004 J. Phys. Chem. A 108 363
[13]Benten R V, Charvat A, Link O, Abel B and Schwarzer D 2004 Chem. Phys. Lett. 386 325
[14]Baskin J S, Yu H Z and Zewail A H 2002 J. Phys. Chem. A 106 9837
[15]Marcus R A and Sutin N 1985 Biochim. Biophys. Acta 811 265
[16]Maroncelli M, MacInnis J and Fleming G R 1989 Science 243 1674
[17]Newton M D and Sutin N 1984 Ann. Rev. Phys. Chem. 35 437
[18]Frontiera R R, Dasgupta J and Mathies R A 2009 J. Am. Chem. Soc. 131 15630
[19]Huber R, Moser J E, Grätzel M and Wachtveitl J 2002 J. Phys. Chem. B 106 6494
[20]Shirota H, Pal H, Tominaga K and Yoshihara K 1998 J. Phys. Chem. A 102 3089
[21]Yang X J, Dykstra T E and Scholes G D 2005 Phys. Rev. B 71 045203
[22]Savarese M, Aliberti A, Santo I D, Battista E, Causa F, Netti P A and Rega N 2012 J. Phys. Chem. A 116 7491
[23]Frank A J, Otvos J W and Calvin M 1979 J. Phys. Chem. 83 716
[24]Karpiuk J, Grabowski Z R and Schryver F C D 1994 J. Phys. Chem. 98 3247
[25]Xu Q H, Scholes G D, Yang M and Fleming G R 1999 J. Phys. Chem. A 103 10348
[26]Saik V O, Goun A A and Fayer M D 2004 J. Chem. Phys. 120 9601
[27]Vogel M W, Rettig W, Sens R and Drexhage K H 1988 Chem. Phys. Lett. 147 452
[28]Pedone A, Prampolini G, Monti S and Barone V 2011 Chem. Mater. 23 5016
[29]Barone V, Bloino J, Monti S, Pedone A and Prampolini G 2011 Phys. Chem. Chem. Phys. 13 2160
[30]Dsouza R N, Pischel U and Nau W M 2011 Chem. Rev. 111 7941
[31]Birtwell S and Morgan H 2009 Integr. Biol. 1 345
[32]Berezin M and Achilefu S 2010 Chem. Rev. 110 2641
[33]Borisov S and Wolfbeis O 2008 Chem. Rev. 108 423
[34]Maroncelli M, MacInnis J and Fleming G R 1989 Science 243 1674
[35]Högemann C, Pauchard M and Vauthey E 1996 Rev. Sci. Instrum. 67 3449
[36]Vauthey E 2001 J. Phys. Chem. A 105 340
[37]Morandeira A, Fürstenberg A and Vauthey E 2004 J. Phys. Chem. A 108 8190
[38]Wang Y H, Peng Y J, Mo Y Q, Yang Y Q and Zheng X X 2008 Appl. Phys. Lett. 93 231902
[39]Yu G Y, Song Y F, Wang Y, He X, Liu Y Q, Liu W L and Yang Y Q 2011 Chem. Phys. Lett. 517 242
[40]Dietzek B, Maksimenka R, Kiefer W, Hermann G, Popp J and Schmitt M 2005 Chem. Phys. Lett. 415 94
[41]Vauthey E and Henseler A 1996 J. Chem. Phys. 100 170
[42]Schmitt M, Dietzek B, Hermann G and Popp J 2007 Laser Photonics Rev. 1 57
[43]Schmitt M, Knopp G, Materny A and Kiefer W 1997 Chem. Phys. Lett. 280 339
[44]Yu G Y, Song Y F, He X, Zheng X X, Tan D W, Chen J and Yang Y Q 2012 Chin. Phys. B 21 043402
[45]Liu W L, Zheng Z R, Zhang J P, Wu W Z, Li A H, Zhang W, Huo M M, Liu Z G, Zhu R B, Zhao L C and Su W H 2012 Chem. Phys. Lett. 532 47
[46]Nicolet O, Banerji N, Pagés S and Vauthey E 2005 J. Phys. Chem. A 109 8236
[47]Watanabe H, Hayazawa N, Inouye Y and Kawata S 2005 J. Phys. Chem. B 109 5012
[48]Shim S, Stuart C M and Mathies R A 2008 Chem. Phys. Chem. 9 697
[49]Zhao G J, Liu J Y, Zhou L C and Han K L 2007 J. Phys. Chem. B 111 8940
[50]Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
[1] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[2] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[3] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
[4] Molecule opacity study on low-lying states of CS
Rui Li(李瑞), Jiqun Sang(桑纪群), Xiaohe Lin(林晓贺), Jianjun Li(李建军), Guiying Liang(梁桂颖), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(10): 103101.
[5] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[6] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[7] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[8] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[9] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[10] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[11] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[12] Crystal growth and spectral properties of Tb: Lu2O3
Jiaojiao Shi(施佼佼), Bin Liu(刘斌), Qingguo Wang(王庆国), Huili Tang(唐慧丽), Feng Wu(吴锋), Dongzhen Li(李东振), Hengyu Zhao(赵衡煜), Zhanshan Wang(王占山), Wen Deng(邓文), Xu Zian(徐子安), Xu Jiayue(徐家跃), Xiaodong Xu(徐晓东), Jun Xu(徐军). Chin. Phys. B, 2018, 27(9): 097801.
[13] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[14] Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy: Lu2O3 for yellow laser
Jiaojiao Shi(施佼佼), Bin Liu(刘斌), Qingguo Wang(王庆国), Huili Tang(唐慧丽), Feng Wu(吴锋), Dongzhen Li(李东振), Hengyu Zhao(赵衡煜), Zhanshan Wang(王占山), Wen Deng(邓文), Xiaodong Xu(徐晓东), Jun Xu(徐军). Chin. Phys. B, 2018, 27(7): 077802.
[15] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
No Suggested Reading articles found!