Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077802    DOI: 10.1088/1674-1056/27/7/077802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy: Lu2O3 for yellow laser

Jiaojiao Shi(施佼佼)1,2, Bin Liu(刘斌)1,2, Qingguo Wang(王庆国)1,2, Huili Tang(唐慧丽)1,2,4, Feng Wu(吴锋)1,2, Dongzhen Li(李东振)3, Hengyu Zhao(赵衡煜)1,2, Zhanshan Wang(王占山)1,2, Wen Deng(邓文)5, Xiaodong Xu(徐晓东)3, Jun Xu(徐军)1,2,6
1 School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China;
2 MOE Key Lab of Advanced Micro-Structure Materials, Shanghai 201899, China;
3 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China;
4 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
5 School of Physical Science and Technology, Guangxi University, Guangxi 530004, China;
6 Shanghai Engineering Research Center for Sapphire Crystals, Shanghai 201899, China
Abstract  

Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86×10-20 cm2, 2.02×10-20 cm2, and 1.76×10-20 cm2, respectively. The emission cross-section at 574 nm corresponding to the 4F9/26H13/2 transition was calculated to be 0.53×10-20 cm2. The yellow (4F9/26H13/2 transition) to blue (4F9/26H15/2 transition) intensity ratio ranges up to 12.9. The fluorescence lifetime of the 4F9/2 energy level was measured to be 112.1 μs. These results reveal that Dy:Lu2O3 is a promising material for use in yellow lasers.

Keywords:  fluorescence spectra      laser materials      excited states  
Received:  06 April 2018      Revised:  02 May 2018      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  42.70.Hj (Laser materials)  
  78.47.da (Excited states)  
Fund: 

Project supported by the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (Grant No. 2008DP173016), the National Key Research and Development Program of China (Grant No. 2016YFB1102202), and the National Key Research and Development Program of China (Grant No. 2016YFB0701002).

Corresponding Authors:  Xiaodong Xu, Jun Xu     E-mail:  xdxu79@jsnu.edu.cn;xujun@mail.shcnc.ac.cn

Cite this article: 

Jiaojiao Shi(施佼佼), Bin Liu(刘斌), Qingguo Wang(王庆国), Huili Tang(唐慧丽), Feng Wu(吴锋), Dongzhen Li(李东振), Hengyu Zhao(赵衡煜), Zhanshan Wang(王占山), Wen Deng(邓文), Xiaodong Xu(徐晓东), Jun Xu(徐军) Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy: Lu2O3 for yellow laser 2018 Chin. Phys. B 27 077802

[1] Wang Y N, Zheng Q, Yao Y and Chen X 2013 Appl. Opt. 52 1876
[2] Liu B, Shi J J, Wang Q G, Tang H L, Liu J F, Zhao H Y, Li D Z, Liu J, Xu X D, Wang Z S and Xu J 2017 Opt. Mater. 72 208
[3] Zhang Y, Xu J and Lu B 2014 J. Alloy. Comp. 582 635
[4] Singh V, Jun-Jie Z, Rao T K G, Tiwari M and Hong-Cheng P 2005 Chin. Phys. Lett. 22 3182
[5] Haro-González P, Martín L L, Martín I R, Berkowski M and Ryba-Romanowski W 2011 Appl. Phys. B 103 597
[6] Zhu G, Li Z W, Wang C, Zhou F G, Wen Y and Xin S Y 2017 Chin. Phys. B 26 097801
[7] Bowman S R, O'Connor S and Condon N J 2012 Opt. Express 20 12906
[8] Bolognesi G, Parisi D, Calonico D, Costanzo G A, Levi F, Metz P W, Krankel C, Huber G and Tonelli M 2014 Opt. Lett. 39 6628
[9] Griebner U, Petrov V, Petermann K and Peters V 2004 Opt. Express 12 3125
[10] Peters R, Kränkel C, Petermann K and Huber G 2007 Opt. Express 15 7075
[11] Pauling L and Shappell M D 1930 Z. Kristallogr. 75 128
[12] Coutures J P, Verges R and Foex M 1975 Rev. Int. Hautes Temp. Rèfract. 12 181
[13] Fornasiero L, Mix E, Peters V, Petermann K and Huber G 1999 Cryst. Res. Technol. 34 255
[14] Fornasiero L, Mix E, Peters V, Petermann K and Huber G 2000 Ceram. Int. 26 589
[15] Laversenne L, Guyot Y, Goutaudier C, Cohen-Adad M T and Boulon G 2001 Opt. Mater. 16 475
[16] Petermann K, Fornasiero L, Mix E and Peters V 2002 Opt. Mater. 19 67
[17] Mun J H, Jouini A, Novoselov A, Guyot Y, Yoshikawa A, Ohta H, Shibata H, Waseda Y, Boulon G and Fukuda T 2007 Opt. Mater. 29 1390
[18] Fukabori A, Chani V, Kamada K, Moretti F and Yoshikawa A 2011 Cryst. Growth. 11 2404
[19] McMillen C, Thompson D, Tritt T and Kolis J 2011 Cryst. Growth. 11 4386
[20] Nakamura S, Senoh M, Nagahama S I, Iwasa N, Yamada T, Matsushita T and Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 74
[21] Judd B R 1962 Phys. Rev. 127 750
[22] Ofelt G S 1962 J. Chem. Phys. 37 511
[23] Wang Y, Li J, Tu C, You Z, Zhu Z and Wu B 2007 Cryst. Res. Technol. 42 1063
[24] Kaminskii A A, Akchurin M S, Becker P, Ueda K, Bohatý L, Shirakawa A, Tokurakawa M, Takaichi K, Yagi H, Dong J and Yanagitani T 2008 Laser Phys. Lett. 5 300
[25] Sardar D K, Bradley W M, Yow R M, Gruber J B and Zandi B 2004 J. Lumin. 106 195
[26] Van Do P, Tuyen V P, Quang V X, Thanh N T, Ha V T T, Tuyen H V, Khaidukov N M, Marcazzo J, Lee Y and Huy B T 2013 Opt. Mater. 35 1636
[27] Xu X D, Hu Z W, Li R J, Li D Z, Di J Q, Su L B, Yang Q H, Sai Q L, Tang H L, Wang Q G, Strzȩp A and Xu J 2017 Opt. Mater. 66 469
[28] Song M, Wu M, Zhou W, Zhou X, Wei B and Wang G 2014 J. Alloy. Comp. 607 110
[29] Ryba-Romanowski W, Dominiak-Dzik G, Solarz P and Lisiecki R 2009 Opt. Mater. 31 1547
[30] Peters V 2001 Growth and Spectroscopy of Ytterbium-doped Sesquioxides (Ph.D. Thesis) (Hamburg:Universität Hamburg)
[31] Yang F, Tu C, Wang H, Wei Y, You Z, Jia G and Wang Y 2007 Opt. Mater. 29 1861
[32] Brik M G, Ishii T, Tkachuk A M, Ivanova S E and Razumova I K 2004 J. Alloys Comp. 374 63
[33] Ning K J, He X M, Zhang L H, Liu Y C, Yin J G, Zhang P X, Chen G Z, wang X Y, Chen Z, Shi C J, Hong J Q and Hang Y 2014 Opt. Mater. 37 745
[34] Zhao W, Zhou W W, Wei B, Yu Y, Wang G F, Du J M, Yu H J, Lv Z C and Chen Y H 2012 J. Alloy. Comp. 538 136
[35] Wang H, Li J, Jia G, You Z, Yang F, Wei Y, Wang Y, Zhu Z, Lu X and Tu C 2007 J. Lumin. 126 452
[36] Lupei A, Lupei V, Gheorghe C, Ikesue A and Enculescu M 2011 J. Appl. Phys. 110 083120
[37] Bigotta S, Tonneli M, Cavalli E and Belletini A 2010 J. Lumin. 130 13
[38] Carnall W T, Fields P R and Rajnak K 1968 J. Chem. Phys. 49 4424
[39] Jayasimhadri M, Ratnam B V, Jang K and Lee H S 2010 J. Am. Ceram. Soc. 93 494
[40] Babu A M, Jamalaiah B C, Kumar J S, Sasikala T and Moorthy L R 2011 J. Alloys Comp. 509 457
[1] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
[2] Crystal growth and spectral properties of Tb: Lu2O3
Jiaojiao Shi(施佼佼), Bin Liu(刘斌), Qingguo Wang(王庆国), Huili Tang(唐慧丽), Feng Wu(吴锋), Dongzhen Li(李东振), Hengyu Zhao(赵衡煜), Zhanshan Wang(王占山), Wen Deng(邓文), Xu Zian(徐子安), Xu Jiayue(徐家跃), Xiaodong Xu(徐晓东), Jun Xu(徐军). Chin. Phys. B, 2018, 27(9): 097801.
[3] Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm
Bin Liu(刘斌), Li-He Zheng(郑丽和), Qing-Guo Wang(王庆国), Jun-Fang Liu(刘军芳), Liang-Bi Su(苏良碧), Hui-Li Tang(唐慧丽), Jie Liu(刘杰), Xiu-Wei Fan(范秀伟), Feng Wu(吴锋), Ping Luo(罗平), Heng-Yu Zhao(赵衡煜), Jiao-Jiao Shi(施佼佼), Nuo-Tian He(何诺天), Na Li(李纳), Qiu Li(李秋), Chao Guo(郭超), Xiao-Dong Xu(徐晓东), Zhan-Shan Wang(王占山), Jun Xu(徐军). Chin. Phys. B, 2017, 26(8): 084203.
[4] Intensities and spectral features of the 4I13/2-4I15/2 potential laser transition of Er3+ centers in CaF2-CeF3 disordered crystal
Qing-Guo Wang(王庆国), Liangbi Su(苏良碧), Jun-Fang Liu(刘军芳), Bin Liu(刘斌), Feng Wu(吴锋), Ping Luo(罗平), Heng-Yu Zhao(赵衡煜), Jiao-Jiao Shi(施佼佼), Yan-Yan Xue(薛艳艳), Xiao-Dong Xu(徐晓东), Witold Ryba-Romanowski, Piotr Solarz, Radoslaw Lisiecki, Zhan-Shan Wang(王占山), Hui-Li Tang(唐慧丽), Jun Xu(徐军). Chin. Phys. B, 2017, 26(11): 114208.
[5] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[6] Population inversion in fluorescing fragments of super-excited molecules inside an air filament
Huai-Liang Xu (徐淮良), See Leang Chin. Chin. Phys. B, 2015, 24(1): 013301.
[7] Decay pathways of superexcited states of nitrous oxide
Lin Mei (林梅), Liu Ya-Wei (刘亚伟), Zhong Zhi-Ping (钟志萍), Zhu Lin-Fan (朱林繁). Chin. Phys. B, 2014, 23(5): 053403.
[8] Momentum transfer dependence behaviors of ionization and dissociation of oxygen
Lin Mei (林梅), Liu Ya-Wei (刘亚伟), Zhong Zhi-Ping (钟志萍), Zhu Lin-Fan (朱林繁). Chin. Phys. B, 2013, 22(2): 023404.
[9] Optical planar waveguides in Yb3+-doped phosphate glasses produced by He+ ion implantation
Liu Chun-Xiao(刘春晓), Li Wei-Nan(李玮楠), Wei Wei(韦玮), and Peng Bo(彭波) . Chin. Phys. B, 2012, 21(7): 074211.
[10] Energy levels of 1s2nd (n ≤ 9) states for lithium-like ions
Hu Mu-Hong(胡木宏), Wang Zhi-Wen(王治文), Zeng Fan-Wei(曾凡伟), Wang Tao(王涛), and Wang Jing(王晶). Chin. Phys. B, 2011, 20(8): 083101.
[11] Experimental study of bound and autoionizing Rydberg states of the europium atom
Xiao Ying(肖颖), Dai Chang-Jian(戴长建), and Qin Wen-Jie(秦文杰). Chin. Phys. B, 2010, 19(6): 063202.
[12] Shape of the geometrically active atomic states of carbon
Xiong Zhuang(熊庄) and Bacalis N.~C.. Chin. Phys. B, 2010, 19(2): 023601.
[13] Studies on heteronuclear diatomic molecular dissociation energies using algebraic energy method
Fan Kai-Min(范开敏), Ren Wei-Yi(任维义), Liu-Yan(刘艳), Wang A-Shu(王阿暑), and Liu Song-Hong(刘松红). Chin. Phys. B, 2007, 16(6): 1641-1649.
[14] Radiative decay from doubly to singly excited states of He via generalization of Laguerre-type orbitals: A non-orthogonal formalism
Xiong Zhuang(熊庄) and Bacalis N C. Chin. Phys. B, 2007, 16(2): 374-381.
[15] Analytic variationally optimized internally orthogonalized modified Laguerre orbitals in accurate atomic configuration interaction calculation
Xiong Zhuang (熊庄), N C Bacalis. Chin. Phys. B, 2006, 15(5): 992-997.
No Suggested Reading articles found!