CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy: Lu2O3 for yellow laser |
Jiaojiao Shi(施佼佼)1,2, Bin Liu(刘斌)1,2, Qingguo Wang(王庆国)1,2, Huili Tang(唐慧丽)1,2,4, Feng Wu(吴锋)1,2, Dongzhen Li(李东振)3, Hengyu Zhao(赵衡煜)1,2, Zhanshan Wang(王占山)1,2, Wen Deng(邓文)5, Xiaodong Xu(徐晓东)3, Jun Xu(徐军)1,2,6 |
1 School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China;
2 MOE Key Lab of Advanced Micro-Structure Materials, Shanghai 201899, China;
3 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China;
4 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
5 School of Physical Science and Technology, Guangxi University, Guangxi 530004, China;
6 Shanghai Engineering Research Center for Sapphire Crystals, Shanghai 201899, China |
|
|
Abstract Dy:Lu2O3 was grown by the float-zone (Fz) method. According to the absorption spectrum, the Judd-Ofelt (JO) parameters Ω2, Ω4, and Ω6 were calculated to be 4.86×10-20 cm2, 2.02×10-20 cm2, and 1.76×10-20 cm2, respectively. The emission cross-section at 574 nm corresponding to the 4F9/2→6H13/2 transition was calculated to be 0.53×10-20 cm2. The yellow (4F9/2→6H13/2 transition) to blue (4F9/2→6H15/2 transition) intensity ratio ranges up to 12.9. The fluorescence lifetime of the 4F9/2 energy level was measured to be 112.1 μs. These results reveal that Dy:Lu2O3 is a promising material for use in yellow lasers.
|
Received: 06 April 2018
Revised: 02 May 2018
Accepted manuscript online:
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
42.70.Hj
|
(Laser materials)
|
|
78.47.da
|
(Excited states)
|
|
Fund: Project supported by the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (Grant No. 2008DP173016), the National Key Research and Development Program of China (Grant No. 2016YFB1102202), and the National Key Research and Development Program of China (Grant No. 2016YFB0701002). |
Corresponding Authors:
Xiaodong Xu, Jun Xu
E-mail: xdxu79@jsnu.edu.cn;xujun@mail.shcnc.ac.cn
|
Cite this article:
Jiaojiao Shi(施佼佼), Bin Liu(刘斌), Qingguo Wang(王庆国), Huili Tang(唐慧丽), Feng Wu(吴锋), Dongzhen Li(李东振), Hengyu Zhao(赵衡煜), Zhanshan Wang(王占山), Wen Deng(邓文), Xiaodong Xu(徐晓东), Jun Xu(徐军) Crystal growth, spectroscopic characteristics, and Judd-Ofelt analysis of Dy: Lu2O3 for yellow laser 2018 Chin. Phys. B 27 077802
|
[1] |
Wang Y N, Zheng Q, Yao Y and Chen X 2013 Appl. Opt. 52 1876
|
[2] |
Liu B, Shi J J, Wang Q G, Tang H L, Liu J F, Zhao H Y, Li D Z, Liu J, Xu X D, Wang Z S and Xu J 2017 Opt. Mater. 72 208
|
[3] |
Zhang Y, Xu J and Lu B 2014 J. Alloy. Comp. 582 635
|
[4] |
Singh V, Jun-Jie Z, Rao T K G, Tiwari M and Hong-Cheng P 2005 Chin. Phys. Lett. 22 3182
|
[5] |
Haro-González P, Martín L L, Martín I R, Berkowski M and Ryba-Romanowski W 2011 Appl. Phys. B 103 597
|
[6] |
Zhu G, Li Z W, Wang C, Zhou F G, Wen Y and Xin S Y 2017 Chin. Phys. B 26 097801
|
[7] |
Bowman S R, O'Connor S and Condon N J 2012 Opt. Express 20 12906
|
[8] |
Bolognesi G, Parisi D, Calonico D, Costanzo G A, Levi F, Metz P W, Krankel C, Huber G and Tonelli M 2014 Opt. Lett. 39 6628
|
[9] |
Griebner U, Petrov V, Petermann K and Peters V 2004 Opt. Express 12 3125
|
[10] |
Peters R, Kränkel C, Petermann K and Huber G 2007 Opt. Express 15 7075
|
[11] |
Pauling L and Shappell M D 1930 Z. Kristallogr. 75 128
|
[12] |
Coutures J P, Verges R and Foex M 1975 Rev. Int. Hautes Temp. Rèfract. 12 181
|
[13] |
Fornasiero L, Mix E, Peters V, Petermann K and Huber G 1999 Cryst. Res. Technol. 34 255
|
[14] |
Fornasiero L, Mix E, Peters V, Petermann K and Huber G 2000 Ceram. Int. 26 589
|
[15] |
Laversenne L, Guyot Y, Goutaudier C, Cohen-Adad M T and Boulon G 2001 Opt. Mater. 16 475
|
[16] |
Petermann K, Fornasiero L, Mix E and Peters V 2002 Opt. Mater. 19 67
|
[17] |
Mun J H, Jouini A, Novoselov A, Guyot Y, Yoshikawa A, Ohta H, Shibata H, Waseda Y, Boulon G and Fukuda T 2007 Opt. Mater. 29 1390
|
[18] |
Fukabori A, Chani V, Kamada K, Moretti F and Yoshikawa A 2011 Cryst. Growth. 11 2404
|
[19] |
McMillen C, Thompson D, Tritt T and Kolis J 2011 Cryst. Growth. 11 4386
|
[20] |
Nakamura S, Senoh M, Nagahama S I, Iwasa N, Yamada T, Matsushita T and Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 74
|
[21] |
Judd B R 1962 Phys. Rev. 127 750
|
[22] |
Ofelt G S 1962 J. Chem. Phys. 37 511
|
[23] |
Wang Y, Li J, Tu C, You Z, Zhu Z and Wu B 2007 Cryst. Res. Technol. 42 1063
|
[24] |
Kaminskii A A, Akchurin M S, Becker P, Ueda K, Bohatý L, Shirakawa A, Tokurakawa M, Takaichi K, Yagi H, Dong J and Yanagitani T 2008 Laser Phys. Lett. 5 300
|
[25] |
Sardar D K, Bradley W M, Yow R M, Gruber J B and Zandi B 2004 J. Lumin. 106 195
|
[26] |
Van Do P, Tuyen V P, Quang V X, Thanh N T, Ha V T T, Tuyen H V, Khaidukov N M, Marcazzo J, Lee Y and Huy B T 2013 Opt. Mater. 35 1636
|
[27] |
Xu X D, Hu Z W, Li R J, Li D Z, Di J Q, Su L B, Yang Q H, Sai Q L, Tang H L, Wang Q G, Strzȩp A and Xu J 2017 Opt. Mater. 66 469
|
[28] |
Song M, Wu M, Zhou W, Zhou X, Wei B and Wang G 2014 J. Alloy. Comp. 607 110
|
[29] |
Ryba-Romanowski W, Dominiak-Dzik G, Solarz P and Lisiecki R 2009 Opt. Mater. 31 1547
|
[30] |
Peters V 2001 Growth and Spectroscopy of Ytterbium-doped Sesquioxides (Ph.D. Thesis) (Hamburg:Universität Hamburg)
|
[31] |
Yang F, Tu C, Wang H, Wei Y, You Z, Jia G and Wang Y 2007 Opt. Mater. 29 1861
|
[32] |
Brik M G, Ishii T, Tkachuk A M, Ivanova S E and Razumova I K 2004 J. Alloys Comp. 374 63
|
[33] |
Ning K J, He X M, Zhang L H, Liu Y C, Yin J G, Zhang P X, Chen G Z, wang X Y, Chen Z, Shi C J, Hong J Q and Hang Y 2014 Opt. Mater. 37 745
|
[34] |
Zhao W, Zhou W W, Wei B, Yu Y, Wang G F, Du J M, Yu H J, Lv Z C and Chen Y H 2012 J. Alloy. Comp. 538 136
|
[35] |
Wang H, Li J, Jia G, You Z, Yang F, Wei Y, Wang Y, Zhu Z, Lu X and Tu C 2007 J. Lumin. 126 452
|
[36] |
Lupei A, Lupei V, Gheorghe C, Ikesue A and Enculescu M 2011 J. Appl. Phys. 110 083120
|
[37] |
Bigotta S, Tonneli M, Cavalli E and Belletini A 2010 J. Lumin. 130 13
|
[38] |
Carnall W T, Fields P R and Rajnak K 1968 J. Chem. Phys. 49 4424
|
[39] |
Jayasimhadri M, Ratnam B V, Jang K and Lee H S 2010 J. Am. Ceram. Soc. 93 494
|
[40] |
Babu A M, Jamalaiah B C, Kumar J S, Sasikala T and Moorthy L R 2011 J. Alloys Comp. 509 457
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|