Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104202    DOI: 10.1088/1674-1056/23/10/104202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis of detection limit to time-resolved coherent anti-Stokes Raman scattering nanoscopy

Liu Wei (刘伟), Liu Shuang-Long (刘双龙), Chen Dan-Ni (陈丹妮), Niu Han-Ben (牛憨笨)
Institute of Optoelectronics, Key Laboratory of Optoelectronic Deviced and Systems of Education Ministry, Shenzhen University, Shenzhen 518060, China
Abstract  In the implementation of CARS nanoscopy, signal strength decreases with focal volume size decreasing. A crucial problem that remains to be solved is whether the reduced signal generated in the suppressed focal volume can be detected. Here reported is a theoretical analysis of detection limit (DL) to time-resolved CARS (T-CARS) nanoscopy based on our proposed additional probe-beam-induced phonon depletion (APIPD) method for the low concentration samples. In order to acquire a detailed shot-noise limited signal-to-noise (SNR) and the involved parameters to evaluate DL, the T-CARS process is described with full quantum theory to estimate the extreme power density levels of the pump and Stokes beams determined by saturation behavior of coherent phonons, which are both actually on the order of ~ 1019 W/cm2. When the pump and Stokes intensities reach such values and the total intensity of the excitation beams arrives at a maximum tolerable by most biological samples in a certain suppressed focal volume (40-nm suppressed focal scale in APIPD method), the DL correspondingly varies with exposure time, for example, DL values are 103 and 102 when exposure times are 20 ms and 200 ms respectively.
Keywords:  break through the diffraction limit      coherent anti-Stokes Raman scattering      nonlinear optics      detection limit  
Received:  26 December 2013      Revised:  14 March 2014      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.65.-k (Nonlinear optics)  
  87.64.-t (Spectroscopic and microscopic techniques in biophysics and medical physics)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB825802), the Major Scientific Instruments Equipment Development of China (Grant No. 2012YQ15009203), the National Natural Science Foundation of China (Grant Nos. 60878053 and 11004136), and the State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, China (Grant No. DL12-01).
Corresponding Authors:  Chen Dan-Ni,Niu Han-Ben     E-mail:  dannyc007@163.com;hbniu@szu.edu.cn
About author:  42.25.Fx; 42.65.Dr; 42.65.-k; 87.64.-t

Cite this article: 

Liu Wei (刘伟), Liu Shuang-Long (刘双龙), Chen Dan-Ni (陈丹妮), Niu Han-Ben (牛憨笨) Analysis of detection limit to time-resolved coherent anti-Stokes Raman scattering nanoscopy 2014 Chin. Phys. B 23 104202

[1]Evans C L and Xie X S 2008 Ann. Rev. Anal. Chem. 1 883
[2]Yuan J H, Xiao F R, Wang G Y and Xu Z Z 2005 Chin. Phys. 14 935
[3]Li X, Zhang H, Zhang X Y, Zhang S A, Wang Z G and Sun Z R 2008 Chin. Phys. Lett. 25 2062
[4]Hajek K M, Littleton B, Turk D, McIntyre T J and Rubinsztein-Dunlop H 2010 Opt. Express 18 19263
[5]Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J and Hess H F 2006 Science 313 1642
[6]Hell S W and Wichmann J 1994 Opt. Lett. 19 780
[7]Beeker W P, Gro P, Lee C J, Cleff C, Offerhaus H L, Fallnich C, Herek J L and Boller K J 2009 Opt. Express 17 22632
[8]Nikolaenko A, Krishnamachari V V and Potma E O 2009 Phys. Rev. A 79 13823
[9]Beeker W P, Lee C J, Boller K J, Gro P, Cleff C, Fallnich C, Offerhaus H L and Herek J L 2010 Phys. Rev. A 81 12507
[10]Cleff C, Groß P, Fallnich C, Offerhaus H L, Herek J L, Kruse K, Beeker W P, Lee C J and Boller K J 2012 Phys. Rev. A 86 23825
[11]Liu W and Niu H B 2011 Phys. Rev. A 83 23830
[12]Ozeki Y, Dake F, Kajiyama S, Fukui K and Itoh K 2009 Opt. Express 17 3651
[13]Ozeki Y and Itoh K 2010 Laser Phys. 20 1114
[14]Min W, Freudiger C W, Lu S and Xie X S 2011 Ann. Rev. Phys. Chem. 62 507
[15]Potma E O and Xie X S 2003 J. Raman Spectrosc. 34 642
[16]Potma E O, Evans C L and Xie X S 2006 Opt. Lett. 31 241
[17]Jurna M, Korterik J P, Otto C, Herek J L and Offerhaus H L 2008 Opt. Express 16 15863
[18]Cheng J X, Volkmer A, Lewis D and Xie X S 2001 J. Phys. Chem. B 105 1277
[19]Volkmer A, Book L D and Xie X S 2002 Appl. Phys. Lett. 80 1505
[20]Everall N J 2000 Appl. Spectrosc. 54 1515
[21]Vallée F and Bogani F 1991 Phys. Rev. B. 43 12049
[22]Waltner P, Materny A and Kiefer W 2000 J. Appl. Phys. 88 5268
[23]Loudon R 2000 The Quantum Theory of Light, 2nd edn. (New York: Oxford University Press) pp. 166-332
[24]Diasty F E 2011 Vib. Spectrosc. 55 1
[25]Portnov A, Rosenwaks S and Bar I 2008 Appl. Phys. Lett. 93 41115
[26]Begley R F, Harvey A B and Byer R L 1974 Appl. Phys. Lett. 25 387
[27]Cui M, Bachler B R and Ogilvie J P 2009 Opt. Lett. 34 773
[28]Zumbusch A, Holtom G R and Xie X S 1999 Phys. Rev. Lett. 82 4142
[29]Bergner G, Chatzipapadopoulos S, Akimov D, Dietzek B, Malsch D, Henkel T, Schlücker S and Popp J 2009 Small 5 2816
[30]Bergner G, Albert C R, Schiller M, Bringmann G, Schirmeister T, Dietzek B, Niebling S, Schlücker S and Popp J 2011 Analyst 136 3686
[31]Begley R F, Harvey A B and Byer R L 2003 Appl. Phys. Lett. 25 387
[32]Zimmerley M, Oertel D C and Ward J L 2009 J. Biomed. Opt. 14 44019
[33]Nan X, Potma E O and Xie X S 2006 Biochem. J. 91 728
[34]König K 2001 J. Microsc. 200 83
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[6] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[7] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[8] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[9] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[10] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[11] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[12] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[13] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[14] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[15] Hydrogen sulphide detection using near-infrared diode laser and compact dense-pattern multipass cell
Xing Tian(田兴), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Kun Liu(刘锟), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2019, 28(6): 063301.
No Suggested Reading articles found!