Please wait a minute...
Chinese Physics, 2001, Vol. 10(12): 1110-1112    DOI: 10.1088/1009-1963/10/12/305
GENERAL Prev   Next  

NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS

Liu Ke-jia (刘克家)a, He Li (何力)a, , Zhou Guo-li (周国利)b, Wu Yu-jiao (伍玉娇)a
a Department of Metallurgy, Guizhou University of Technology, Guiyang 550003, China; b Department of Basic Science Guizhou University of Technology, Guiyang 550003, China
Abstract  Using the formalism of supersymmetric quantum mechanics, we give an exact solution for a family of one-dimensional periodic potentials, which are the supersymmetric partners of the potential proportional to the trigonometric function cos(2x) such that the Schr?dinger equation for this potential is named the Mathieu equation mathematically. We show that the new potentials are distinctly different from their original ones. However, both have the same energy band structure. All the potentials obtained in this paper are free of singularities.
Keywords:  periodic potential      exact solution      Mathieu's equation      supersymmetric quantum mechanics  
Received:  17 June 2001      Revised:  22 July 2001      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Sa (Functional analysis)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the Natural Science Foundation of Guizhou Province, China (Grant No. 20003021).

Cite this article: 

Liu Ke-jia (刘克家), He Li (何力), Zhou Guo-li (周国利), Wu Yu-jiao (伍玉娇) NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS 2001 Chinese Physics 10 1110

[1] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[2] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[3] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[4] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[5] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[6] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[7] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[8] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[9] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[10] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[11] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[12] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[13] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[14] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[15] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
No Suggested Reading articles found!