Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 061101    DOI: 10.1088/1674-1056/20/6/061101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Prev   Next  

Spin-weighted spheroidal equation in the case of s=1

Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟)
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We present a series of studies to solve the spin-weighted spheroidal wave equation by using the method of super-symmetric quantum mechanics. We first obtain the first four terms of super-potential of the spin-weighted spheroidal wave equation in the case of s=1. These results may help summarize the general form for the n-th term of the super-potential, which is proved to be correct by means of induction. Then we compute the eigen-values and the eigen-functions for the ground state. Finally, the shape-invariance property is proved and the eigen-values and eigen-functions for excited states are obtained. All the results may be of significance for studying the electromagnetic radiation processes near rotating black holes and computing the radiation reaction in curved space-time.
Keywords:  spheroidal wave equation      supersymmetric quantum mechanics      super-potential      eigenvalue and eigenfunction  
Received:  24 November 2010      Revised:  23 December 2010      Accepted manuscript online: 
PACS:  11.30.Pb (Supersymmetry)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875018 and 10773002).

Cite this article: 

Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) Spin-weighted spheroidal equation in the case of s=1 2011 Chin. Phys. B 20 061101

[1] Teukolsky S A 1972 Phys. Rev. Lett. 29 1114
[2] Teukolsky S A 1973 Astrophys. J. 185 635
[4] Marc Casals and Adrain C 2005 Phys. Rev. D 71 064025
[4] Berti E, Cardoso V and Casals M 2006 Phys. Rev. D 73 024013
[5] Tian G H and Zhong S Q 2009 arXiv: 0906.4687v2, 0906.4685v2
[6] Tian G H 2005 Chin. Phys. Lett. 22 3013
[7] Tian G H and Zhong S Q 2010 Chin. Phys. Lett. 27 040305
[8] Tian G H 2010 Chin. Phys. Lett. 27 030308
[9] Tang W L and Tian G H 2011 Chin. Phys. B 20 010304
[10] Zhou J, Tian G H and Tang W L 2010 The Spin-Weighted Spheroidal Wave Functions in the Case of s=frac 12, submitted to J. Math. Phys.
[11] Li K, Sun Y, Tian G H and Tang W L 2010 A Tentative Study of the Spheroidal Wave Function in the Case of s=2, to appear in Sci. Chin. G No. 6 (in Chinese)
[12] Dong K, Tian G H and Sun Y 2010 Study of the Spin-weighted Spheroidal Wave Equation in the Case of s=1/2 arXiv: 1011.2579
[13] Tian G H and Zhong S Q 2009 ArXiv: 0906.4687 V3: Investigation of the Recurrence Relations for the Spheroidal Wave Functions, preprint
[14] Dong K, Tian G H and Sun Y 2010 Study of the Spin-weighted Spheroidal Equation in the Case of s=3/2 submitted to Frontiers of Physics in China
[15] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 268 and references therein
[16] Gradsbteyn I S and Ryzbik L M 2000 Table of Integrals, Series, and Products 6th edn. (Singapore: Elsevier)
[17] Lu F L and Chen C Y 2010 Chin. Phys. B 19 100309
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
[3] Transmission time in the reflectionless complex potential
Yin Cheng (殷澄), Wang Xian-Ping (王贤平), Shan Ming-Lei (单鸣雷), Han Qing-Bang (韩庆邦), Zhu Chang-Ping (朱昌平). Chin. Phys. B, 2014, 23(10): 100301.
[4] Solve the spin-weighted spheroidal wave equation
Li Yu-Zhen (李玉祯), Tian Gui-Hua (田贵花), Dong Kun (董锟). Chin. Phys. B, 2013, 22(6): 060203.
[5] New WKB method in supersymmetry quantum mechanics
Tian Gui-Hua(田贵花) . Chin. Phys. B, 2012, 21(4): 040301.
[6] Analytic solutions of the ground and excited states of the spin-weighted spheroidal equation in the case of s=2
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040401.
[7] Verification of the spin-weighted spheroidal equation in the case of s=1
Zhang Qing(张晴), Tian Gui-Hua(田贵花), Sun Yue(孙越), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040402.
[8] Low frequency asymptotics for the spin-weighted spheroidal equation in the case of s=1/2
Dong Kun(董锟), Tian Gui-Hua(田贵花), and Sun Yue(孙越). Chin. Phys. B, 2011, 20(7): 071101.
[9] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin (唐文林), Tian Gui-Hua (田贵花). Chin. Phys. B, 2011, 20(5): 050301.
[10] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[11] Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method
Tang Wen-Lin(唐文林) and Tian Gui-Hua(田贵花). Chin. Phys. B, 2011, 20(1): 010304.
[12] Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials
Chen Gang (陈刚), Chen Zi-Dong (陈子栋), Lou Zhi-Mei (楼智美). Chin. Phys. B, 2004, 13(3): 279-282.
[13] NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS
Liu Ke-jia (刘克家), He Li (何力), Zhou Guo-li (周国利), Wu Yu-jiao (伍玉娇). Chin. Phys. B, 2001, 10(12): 1110-1112.
No Suggested Reading articles found!