Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 071101    DOI: 10.1088/1674-1056/20/7/071101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Prev   Next  

Low frequency asymptotics for the spin-weighted spheroidal equation in the case of s=1/2

Dong Kun(董锟), Tian Gui-Hua(田贵花), and Sun Yue(孙越)
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The spin-weighted spheroidal equation in the case of s=1/2 is thoroughly studied by using the perturbation method from the supersymmetric quantum mechanics. The first-five terms of the superpotential in the series of parameter β are given. The general form for the n-th term of the superpotential is also obtained, which could also be derived from the previous terms Wk, k < n. From these results, it is easy to obtain the ground eigenfunction of the equation. Furthermore, the shape-invariance property in the series of parameter β is investigated and is proven to be kept. This nice property guarantees that the excited eigenfunctions in the series form can be obtained from the ground eigenfunction by using the method from the supersymmetric quantum mechanics. We show the perturbation method in supersymmetric quantum mechanics could completely solve the spin-weight spheroidal wave equations in the series form of the small parameter β.
Keywords:  spheroidal wave equation      supersymmetric quantum mechanics      superpotential      shape invariance  
Received:  20 December 2010      Revised:  08 March 2011      Accepted manuscript online: 
PACS:  11.30.Pb (Supersymmetry)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  

Cite this article: 

Dong Kun(董锟), Tian Gui-Hua(田贵花), and Sun Yue(孙越) Low frequency asymptotics for the spin-weighted spheroidal equation in the case of s=1/2 2011 Chin. Phys. B 20 071101

[1] Teukolsky S A 1972 Phys. Rev. Lett. 29 1114
[2] Teukolsky S A 1973 Astrophys. J. 185 635
[3] Berti E, Cardoso V and Casals M 2006 Phys. Rev. D 73 024013
[4] Leaver E W 1986 J. Math. Phys. 27 1238
[5] Breuer R, Ryan Jr M and Waller S 1977 Proc. R. Soc. Lond. A 358 71
[6] Casals M and Ottewill A C 2005 Phys. Rev. D 71 064025
[7] Press W H and Teukolsky S A 1973 Astrophys. J. 185 649
[8] Fackerell E D and Grossman R G 1977 J. Math. Phys. 18 1849
[9] Fujita R and Tagoshi H 2004 arXiv:gr-qc/0410018 v1 5
[10] Tian G H 2010 Chin. Phys. Lett. 27 030308
[11] Tian G H 2005 Chin. Phys. Lett. 22 3013
[12] Tian G H and Zhong S Q 2010 Chin. Phys. Lett. 27 040305
[13] Tian G H and Zhong S Q 2009 arXiv: 0906.4687 V3
[14] Tian G H and Zhong S Q 2010 Chin. Phys. Lett. 27 100306
[15] Tang W L and Tian G H 2011 Chin. Phys. B 20 050301
[16] Zhou J, Tian G H and Tang W L 2010 J. Math. Phys. (submitted)
[17] Tang W L and Tian G H 2011 Chin. Phys. B 20 010304
[18] Li K, Sun Y, Tian G H and Tang W L 2010 Sci. Chin. Ser. G (preprint) (in Chinese)
[19] Dong K, Tian G H and Sun Y 2010 arXiv: 1011.2579
[20] Gradsbteyn I S and Ryzbik L M 2000 Table of Integrals, Series, and Products 6th edn. (Singapore: Elsevierpte. Ltd)
[21] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 268
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
[3] Transmission time in the reflectionless complex potential
Yin Cheng (殷澄), Wang Xian-Ping (王贤平), Shan Ming-Lei (单鸣雷), Han Qing-Bang (韩庆邦), Zhu Chang-Ping (朱昌平). Chin. Phys. B, 2014, 23(10): 100301.
[4] Solve the spin-weighted spheroidal wave equation
Li Yu-Zhen (李玉祯), Tian Gui-Hua (田贵花), Dong Kun (董锟). Chin. Phys. B, 2013, 22(6): 060203.
[5] Analytic solutions of the ground and excited states of the spin-weighted spheroidal equation in the case of s=2
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040401.
[6] Verification of the spin-weighted spheroidal equation in the case of s=1
Zhang Qing(张晴), Tian Gui-Hua(田贵花), Sun Yue(孙越), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040402.
[7] Spin-weighted spheroidal equation in the case of s=1
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟). Chin. Phys. B, 2011, 20(6): 061101.
[8] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin (唐文林), Tian Gui-Hua (田贵花). Chin. Phys. B, 2011, 20(5): 050301.
[9] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[10] Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method
Tang Wen-Lin(唐文林) and Tian Gui-Hua(田贵花). Chin. Phys. B, 2011, 20(1): 010304.
[11] Bound states of the Schrödinger equation for the Pöschl–Teller double-ring-shaped Coulomb potential
Lu Fa-Lin(陆法林) and Chen Chang-Yuan(陈昌远). Chin. Phys. B, 2010, 19(10): 100309.
[12] Bound states of Klein—Gordon equation for double ring-shaped oscillator scalar and vector potentials
Lu Fa-Lin (陆法林), Chen Chang-Yuan (陈昌远), Sun Dong-Sheng (孙东升). Chin. Phys. B, 2005, 14(3): 463-467.
[13] Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials
Chen Gang (陈刚), Chen Zi-Dong (陈子栋), Lou Zhi-Mei (楼智美). Chin. Phys. B, 2004, 13(3): 279-282.
[14] NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS
Liu Ke-jia (刘克家), He Li (何力), Zhou Guo-li (周国利), Wu Yu-jiao (伍玉娇). Chin. Phys. B, 2001, 10(12): 1110-1112.
No Suggested Reading articles found!