PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Numerical analysis of the optimized performance of the electron cyclotron wave system in a HL-2M tokamak |
Jing-Chun Li(李景春)1, Xue-Yu Gong(龚学余)1, Jia-Qi Dong(董家齐)2, Jun Wang(王俊)2, Lan Yin(尹岚)3 |
1 School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; 2 Southwestern Institute of Physics, P O Box 432, Chengdu 610041, China; 3 School of Mathematics and Physics, University of South China, Hengyang 421001, China |
|
|
Abstract The capabilities of current drive, neoclassical tearing mode (NTM) stabilization, and sawtooth control are analyzed for the electron-cyclotron wave (ECW) system in a HL-2M tokamak. Better performance of the upper launcher is demonstrated in comparison with that of a dropped upper launcher, in terms of JEC/Jbs for NTM stabilization and IECCD/(Δρtor)2 for sawtooth control. 1-MW ECW power is enough for the 3/2 NTM stabilization, and 1.8-MW ECW power is required to suppress 2/1 NTM in a single null divertor equilibrium with 1.2-MA toroidal current with the upper launcher. Optimization simulation of electron-cyclotron current drive (ECCD) is carried out for three mirrors in an equatorial port, indicating that the middle mirror has a good performance compared with the top and bottom mirrors. The results for balanced co-and counter-ECCD in an equatorial port are also presented.
|
Received: 03 June 2015
Revised: 30 November 2015
Accepted manuscript online:
|
PACS:
|
52.35.Hr
|
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
|
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
52.55.Wq
|
(Current drive; helicity injection)
|
|
52.35.Py
|
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375085, 11405082, 11505092,11475083, and 11375053), the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2013GB104004, 2013GB111000, 2014GB107000, and 2014GB108002), and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ4044). |
Corresponding Authors:
Jia-Qi Dong
E-mail: gongxueyu@126.com
|
Cite this article:
Jing-Chun Li(李景春), Xue-Yu Gong(龚学余), Jia-Qi Dong(董家齐), Jun Wang(王俊), Lan Yin(尹岚) Numerical analysis of the optimized performance of the electron cyclotron wave system in a HL-2M tokamak 2016 Chin. Phys. B 25 045201
|
[1] |
Poli E, Tardini G, Zohm H, Fable E, Farina D, Figini L, Marushchenko N B and Porte L 2013 Nucl. Fusion 53 013011
|
[2] |
Gong X Y, Peng X W, Xie A P and Liu W Y 2006 Acta Phys. Sin. 55 1307 (in Chinese)
|
[3] |
Chen S Y, Tang C J and Zhang X J 2013 Chin. Phys. Lett. 30 65202
|
[4] |
Gong X Y, Shi B R, Zhang J H, Qiu X P and Ling Q 2002 Acta Phys. Sin. 51 2547 (in Chinese)
|
[5] |
Xia F, Pan L, Zhao L, PanW, Song X, Li X Y,Wang C, Lan J T, Chen L Y and Kazuo Nakamura 2012 Plasma and Fusion Research 7 2405048
|
[6] |
Li Q 2013 “The Construction Progress of HL-2M Tokamak”. In the preceedings of the 25th Symposium on Fusion Engineering (SOFE)
|
[7] |
Peng J F, XuanWM,Wang H B, Li H J,Wang Y Q andWang S J 2013 Plasma Sci. Technol. 15 300
|
[8] |
Henderson M A, Heidinger R, Strauss D, Bertizzolo R, Bruschi A, Chavan R, Ciattaglia E, Cirant S, Collazos A, Danilov I, Dolizy F, Duron J, Farina D, Fischer U, Gantenbein G, Hailfinger G, Kasparek W, Kleefeldt K, Landis J D, Meier A, Moro A, Platania P, Plaum B, Poli E, Ramponi G, Saibene G, Sanchez F, Sauter O, Serikov A, Shidara H, Sozzi C, Spaeh P, Udintsev V S, Zohm H and Zucca C 2008 Nucl. Fusion 48 054013
|
[9] |
Perkins F W and Harvey R W 2000 Bull. Am. Phys. Soc. 45 278
|
[10] |
Ramponi G, Farina D, Henderson M A, Poli E, Sauter O, Saibene G, Zohm H and Zucca C 2008 Nucl. Fusion 48 054012
|
[11] |
Zohm H, Heidinger R, Henderson M, Poli E, Ramponi G, Saibene G and Verhoeven A G A 2005 J. Phys.: Conf. Ser. 25 234
|
[12] |
Wang X G, Wu B, Hu Y M, Wang J F, Hu C D and Zhang X D 2012 Phys. Scr. 86 065501
|
[13] |
Sauter O, Westerhof E, Mayoral M L, Alper B, Belo P A, Buttery R J, Gondhalekar A, Hellsten T, Hender T C, Howell D F, Johnson T, Lamalle P, Mantsinen M J, Milani F, Nave M F F, Nguyen F, Pecquet A L, Pinches S D, Podda S and Rapp J 2002 Phys. Rev. Lett. 88 105001
|
[14] |
Angioni C, Goodman T P, Henderson M A and Sauter O 2003 Nucl. Fusion 43 455
|
[15] |
Zohm H, Gantenbein G, Leuterer F, Manini A, Maraschek M, Yu Q and the ASDEX Upgrade Team 2007 Nucl. Fusion 47 228
|
[16] |
Prater R 2005 J. Phys.: Conf. Ser. 25 257
|
[17] |
Henderson M A, Behn R, Coda S, Condrea I, Duval B P, Goodman T P, Karpushov A, Martin Y, Martynov An, Moret J M, Nikkola P, Porte L, Sauter O, Scarabosio A, Zhuang G and the TCV Team 2004 Plasma Phys. Control. Fusion 46 A275
|
[18] |
Mazzucato E, Fidone I and Granata G 1987 Phys. Fluids 30 3745
|
[19] |
Cohen R H 1987 Phys. Fluids 30 2442
|
[20] |
Petty C C, La Haye R J, Luce T C, Humphreys D A, Hyatt A W, Lohr J, Prater R, Strait E J and Wade M R 2004 Nucl. Fusion 44 243-51
|
[21] |
Alberti S Goodman T P, Henderson M A, Manini A, Moret J M, Gomez P, Blanchard P, Coda S, Sauter O, Peysson Y and TCV Team 2002 Nucl. Fusion 42 42-5
|
[22] |
Li J C, Gong X Y, Dong J Q, Gao Q D, Zhang N and Li F Y 2015 Phys. Plasmas 22 102510
|
[23] |
Wang Z T, Long Y X, Dong J Q and He Z X 2013 Chin. Phys. B 22 095201
|
[24] |
Lin-Liu Y R, Chan V S and Prater R 2003 Phys. Plasmas 10 4064
|
[25] |
Wei W, Ding B J, Zhang X J, Wang X J, Li M H, Kong E H and Zhang L 2014 Chin. Phys. B 23 055201
|
[26] |
Cui X W, Pan Y D, Cui Z Y, Li J X, Zhang J H and Mao R 2013 Plasma Sci. Technol. 15 1184
|
[27] |
Lao L L, John H St, Stambaugh R D, Kellman A G and Pfeiffer W 1985 Nucl. Fusion 25 1611
|
[28] |
Pfeiffer W W, Davidson R H, Miller R L and Waltz R E 1980 “ONETWO: A computer Code for Modeling Plasma Transport in Tokamaks,” 1980, General Atomics Report GA-A16178
|
[29] |
Merkulov A, Westerhof E, Schuller F C, de Baar M R, Kramer-Flecken A, Liang Y and TEXTOR Team 2004 Proc. Joint Varenna-Lausanne Int. Workshop on Theory of Fusion Plasmas, Varenna, Italy, p. 279
|
[30] |
Ramponi G, Farina D, A Henderson M, Poli E, Saibene G and Zohm H 2007 Fusion Sci. Technol. 52 193
|
[31] |
Li J C, Gong X Y, Dong J Q, Zheng P W, Song S D, Gao Q D and Du D 2015 Phys. Plasmas 22 062512
|
[32] |
Gnesin S, Decker J, Coda S, Goodman T P, Peysson Y and Mazon D 2012 Plasma Phys. Control Fusion 54 035002
|
[33] |
Farina D, Henderson M, Figini L, Ramponi G and Saibene G 2012 Nucl. Fusion 52 033005
|
[34] |
Coda S, Sauter O, Henderson M A and Goodman T P 2008 “Full bootstrap discharge sustainment in steady state in the TCV tokamak”, Proceedings of the 22nd IAEA Fusion Energy Conference, IAEA, 2008 (CRPP-CONF-2008-002): EX/2-3
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|