|
|
Theoretical study on isotope separation of an ytterbium atomic beam by laser deflection |
Zhou Min (周敏), Xu Xin-Ye (徐信业) |
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China |
|
|
Abstract Isotope separation by laser deflecting an atomic beam is analyzed theoretically. Interacting with a tilted one-dimensional optical molasses, an ytterbium atomic beam is split into multi-beams with different isotopes like 172Yb, 173Yb, and 174Yb. By using the numerical calculation, the dependences of the splitting angle on the molasses laser intensity and detuning are studied, and the optimal parameters for the isotope separation are also investigated. Furthermore, the isotope separation efficiency and purity are estimated. Finally a new scheme for the efficient isotope separation is proposed. These findings will give a guideline for simply obtaining pure isotopes of various elements.
|
Received: 18 August 2013
Revised: 30 September 2013
Accepted manuscript online:
|
PACS:
|
32.10.Fn
|
(Fine and hyperfine structure)
|
|
28.60.+s
|
(Isotope separation and enrichment)
|
|
32.30.-r
|
(Atomic spectra?)
|
|
32.10.Bi
|
(Atomic masses, mass spectra, abundances, and isotopes)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821302), the National Natural Science Foundation of China (Grant Nos. 11134003 and 10774044), and the Shanghai Excellent Academic Leaders Program, China (Grant No. 12XD1402400). |
Corresponding Authors:
Xu Xin-Ye
E-mail: xyxu@phy.ecnu.edu.cn
|
Cite this article:
Zhou Min (周敏), Xu Xin-Ye (徐信业) Theoretical study on isotope separation of an ytterbium atomic beam by laser deflection 2014 Chin. Phys. B 23 013202
|
[1] |
Park H, Kwon D H, Cha Y, Nam S, Kim T S, Han J, Rhee Y, Jeong D Y and Kim C J 2006 J. Korean Phys. Soc. 49 382
|
[2] |
Das D and Natarajan V 2007 Phys. Rev. A 76 062505
|
[3] |
Wang P J, Fu Z K, Chai S J and Zhang J 2011 Chin. Phys. B 20 103401
|
[4] |
Tomoya A, Masao T and Hidetoshi K 2008 Nat. Phys. 4 954
|
[5] |
Su J, Deng K, Guo D Z, Wang Z, Chen J, Zhang G M and Chen X Z 2010 Chin. Phys. B 19 110701
|
[6] |
Nelson D E, Korteling R G and Stott W R 1977 Science 198 507
|
[7] |
Wendt K D A, Blaum K, Geppert C, Horn R, Passler G, Trautmann N and Bushaw B A 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 204 325
|
[8] |
Fan F Y and Wang L J 2011 Acta Phys. Sin. 60 093203 (in Chinese)
|
[9] |
Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
|
[10] |
Natarajan V 2005 Eur. Phys. J. D 32 33
|
[11] |
Ohmukai R, Urabe S and Watanabe M 2003 Appl. Phys. B 77 415
|
[12] |
Hong T, Cramer C, Nagourney W and Fortson E N 2005 Phys. Rev. Lett. 94 050801
|
[13] |
Fukuhara T, Takasu Y, Kumakura M and Takahashi Y 2007 Phys. Rev. Lett. 98 030401
|
[14] |
Fukuhara T, Sugawa S and Takahashi Y 2007 Phys. Rev. A 76 051604
|
[15] |
Rapol U D, Wasan A and Natarajan V 2003 Europhys. Lett. 61 53
|
[16] |
Balykin V I, Letokhov V S, Ovchinnikov Y B, Sidorov A I and Shul’ga S V 1988 Opt. Lett. 13 958
|
[17] |
Kotlikov E N and Khryashchev L Y 1986 Opt. Spectrosc. 61 405
|
[18] |
Witte A, Kisters T, Riehle F and Helmche J 1992 J. Opt. Soc. Am. B 9 1030
|
[19] |
Nellessen J, Muller J H, Sengstock K and Ertmer W 1989 J. Opt. Soc. Am. B 6 2149
|
[20] |
Janik G R, Cannon B D, Ogorzalek-Loo R and Bushaw B A 1989 J. Opt. Soc. Am. B 6 1617
|
[21] |
Thomas H L 2001 Laser Cooling and Trapping of Atomic Ytterbium (Ph.D. dissertation) (Oregon: University of Oregon)
|
[22] |
Maruyama R, Wynar R H, Romalis M V, Andalkar A, Swallows M D, Pearson C E and Fortson E N 2003 Phys. Rev. A 68 011403
|
[23] |
Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N and Westbrook C I 1989 J. Opt. Soc. Am. B 6 2084
|
[24] |
Xu X Y, Loftus T H, Dunn J W, Greene C H, Hall J H, Gallagher A and Ye J 2003 Phys. Rev. Lett. 90 193002
|
[25] |
Kohno T, Yasuda M, Inaba H and Hong F L 2008 Jpn. J. Appl. Phys. 47 8856
|
[26] |
Wang W L, Ye J, Jiang H L, Bi Z Y, Ma L S and Xu X Y 2011 Chin. Phys. B 20 013201
|
[27] |
Bernhardt A F 1976 Appl. Phys. 9 19
|
[28] |
Honda K, Takahashi Y, Kuwamoto T, Fujimoto M, Toyoda K, Ishikawa K and Yabuzaki T 1999 Phys. Rev. A 59 R934
|
[29] |
Xu X Y, Wang W L, Zhou Q H, Li G H, Jiang H L, Chen L F, Ye J, Zhou Z H, Cai Y, Tang H Y and Zhou M 2009 Front. Phys. China 4 160
|
[30] |
Park S E, Lee H S, Shin E J, Kwon T Y, Yang S H and Cho H 2002 J. Opt. Soc. Am. B 19 2595
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|