Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 013202    DOI: 10.1088/1674-1056/23/1/013202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study on isotope separation of an ytterbium atomic beam by laser deflection

Zhou Min (周敏), Xu Xin-Ye (徐信业)
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  Isotope separation by laser deflecting an atomic beam is analyzed theoretically. Interacting with a tilted one-dimensional optical molasses, an ytterbium atomic beam is split into multi-beams with different isotopes like 172Yb, 173Yb, and 174Yb. By using the numerical calculation, the dependences of the splitting angle on the molasses laser intensity and detuning are studied, and the optimal parameters for the isotope separation are also investigated. Furthermore, the isotope separation efficiency and purity are estimated. Finally a new scheme for the efficient isotope separation is proposed. These findings will give a guideline for simply obtaining pure isotopes of various elements.
Keywords:  isotope separation      ytterbium      optical molasses      laser cooling  
Received:  18 August 2013      Revised:  30 September 2013      Accepted manuscript online: 
PACS:  32.10.Fn (Fine and hyperfine structure)  
  28.60.+s (Isotope separation and enrichment)  
  32.30.-r (Atomic spectra?)  
  32.10.Bi (Atomic masses, mass spectra, abundances, and isotopes)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821302), the National Natural Science Foundation of China (Grant Nos. 11134003 and 10774044), and the Shanghai Excellent Academic Leaders Program, China (Grant No. 12XD1402400).
Corresponding Authors:  Xu Xin-Ye     E-mail:  xyxu@phy.ecnu.edu.cn

Cite this article: 

Zhou Min (周敏), Xu Xin-Ye (徐信业) Theoretical study on isotope separation of an ytterbium atomic beam by laser deflection 2014 Chin. Phys. B 23 013202

[1] Park H, Kwon D H, Cha Y, Nam S, Kim T S, Han J, Rhee Y, Jeong D Y and Kim C J 2006 J. Korean Phys. Soc. 49 382
[2] Das D and Natarajan V 2007 Phys. Rev. A 76 062505
[3] Wang P J, Fu Z K, Chai S J and Zhang J 2011 Chin. Phys. B 20 103401
[4] Tomoya A, Masao T and Hidetoshi K 2008 Nat. Phys. 4 954
[5] Su J, Deng K, Guo D Z, Wang Z, Chen J, Zhang G M and Chen X Z 2010 Chin. Phys. B 19 110701
[6] Nelson D E, Korteling R G and Stott W R 1977 Science 198 507
[7] Wendt K D A, Blaum K, Geppert C, Horn R, Passler G, Trautmann N and Bushaw B A 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 204 325
[8] Fan F Y and Wang L J 2011 Acta Phys. Sin. 60 093203 (in Chinese)
[9] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
[10] Natarajan V 2005 Eur. Phys. J. D 32 33
[11] Ohmukai R, Urabe S and Watanabe M 2003 Appl. Phys. B 77 415
[12] Hong T, Cramer C, Nagourney W and Fortson E N 2005 Phys. Rev. Lett. 94 050801
[13] Fukuhara T, Takasu Y, Kumakura M and Takahashi Y 2007 Phys. Rev. Lett. 98 030401
[14] Fukuhara T, Sugawa S and Takahashi Y 2007 Phys. Rev. A 76 051604
[15] Rapol U D, Wasan A and Natarajan V 2003 Europhys. Lett. 61 53
[16] Balykin V I, Letokhov V S, Ovchinnikov Y B, Sidorov A I and Shul’ga S V 1988 Opt. Lett. 13 958
[17] Kotlikov E N and Khryashchev L Y 1986 Opt. Spectrosc. 61 405
[18] Witte A, Kisters T, Riehle F and Helmche J 1992 J. Opt. Soc. Am. B 9 1030
[19] Nellessen J, Muller J H, Sengstock K and Ertmer W 1989 J. Opt. Soc. Am. B 6 2149
[20] Janik G R, Cannon B D, Ogorzalek-Loo R and Bushaw B A 1989 J. Opt. Soc. Am. B 6 1617
[21] Thomas H L 2001 Laser Cooling and Trapping of Atomic Ytterbium (Ph.D. dissertation) (Oregon: University of Oregon)
[22] Maruyama R, Wynar R H, Romalis M V, Andalkar A, Swallows M D, Pearson C E and Fortson E N 2003 Phys. Rev. A 68 011403
[23] Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N and Westbrook C I 1989 J. Opt. Soc. Am. B 6 2084
[24] Xu X Y, Loftus T H, Dunn J W, Greene C H, Hall J H, Gallagher A and Ye J 2003 Phys. Rev. Lett. 90 193002
[25] Kohno T, Yasuda M, Inaba H and Hong F L 2008 Jpn. J. Appl. Phys. 47 8856
[26] Wang W L, Ye J, Jiang H L, Bi Z Y, Ma L S and Xu X Y 2011 Chin. Phys. B 20 013201
[27] Bernhardt A F 1976 Appl. Phys. 9 19
[28] Honda K, Takahashi Y, Kuwamoto T, Fujimoto M, Toyoda K, Ishikawa K and Yabuzaki T 1999 Phys. Rev. A 59 R934
[29] Xu X Y, Wang W L, Zhou Q H, Li G H, Jiang H L, Chen L F, Ye J, Zhou Z H, Cai Y, Tang H Y and Zhou M 2009 Front. Phys. China 4 160
[30] Park S E, Lee H S, Shin E J, Kwon T Y, Yang S H and Cho H 2002 J. Opt. Soc. Am. B 19 2595
[1] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[2] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[5] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[6] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[7] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[8] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[9] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[10] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[11] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[12] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[13] Determination of static dipole polarizabilities of Yb atom
Zhi-Ming Tang(唐志明), Yan-Mei Yu(于艳梅), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(6): 063101.
[14] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[15] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
No Suggested Reading articles found!