CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys |
Lu Cai-Jiang (鲁彩江), Li Ping (李平), Wen Yu-Mei (文玉梅), Yang Ai-Chao (杨爱超), Yang Chao (杨超), Wang De-Cai (王德才), He Wei (何伟), Zhang Ji-Tao (张吉涛) |
Research Center of Sensors and Instruments, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China |
|
|
Abstract We comparatively investigate the influence of various high-permeability alloys on the hysteretic and remanent resonant magnetoelectric (ME) response in a composite of magnetostrictive nickel (Ni) and piezoelectric Pb(Zr1-x, Tix)O3 (PZT). In order to implement this comparative research, Co-based amorphous alloy (CoSiB), Fe-based nanocrystalline alloy (FeCuNbSiB) and Fe-based amorphous alloy (FeSiB) are used according to different magnetostriction (λs) and saturation magnetization (μ0Ms) characteristics. The bending and longitudinal resonant ME voltage coefficients (αME,b and αME,l) are observed comparatively for CoSiB/Ni/PZT, FeCuNbSiB/Ni/PZT, and FeSiB/Ni/PZT composites. The experimental data indicate that the FeSiB/Ni/PZT composite has the largest remanent self-biased αME,b and αME,l due to the largest magnetic grading of λs and μ0 Ms in the FeSiB/Ni layer. When the number of FeSiB foils is four, the maximum remanent αME,b and αME,l at zero bias magnetic field are 57.8 V/cm·Oe and 107.6 V/cm·Oe, respectively. It is recommended that the high-permeability alloy is supposed to have larger λs and μ0 Ms for obtaining a larger remanent self-biased ME responses in ME composite with high-permeability alloy.
|
Received: 26 February 2014
Revised: 14 May 2014
Accepted manuscript online:
|
PACS:
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
85.80.Jm
|
(Magnetoelectric devices)
|
|
77.84.Lf
|
(Composite materials)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA040602) and the National Natural Science Foundation of China (Grant No. 61374217). |
Corresponding Authors:
Li Ping
E-mail: liping@cqu.edu.cn
|
Cite this article:
Lu Cai-Jiang (鲁彩江), Li Ping (李平), Wen Yu-Mei (文玉梅), Yang Ai-Chao (杨爱超), Yang Chao (杨超), Wang De-Cai (王德才), He Wei (何伟), Zhang Ji-Tao (张吉涛) Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys 2014 Chin. Phys. B 23 117503
|
[1] |
Zhai J Y, Dong S X, Xing Z P, Li J F and Viehland D 2007 Appl. Phys. Lett. 91 123513
|
[2] |
Dong S X, Bai J G, Zhai J Y, Li J F, Lu G Q, Viehland D, Zhang S J and Shrout T R 2005 Appl. Phys. Lett. 86 182506
|
[3] |
Zhang S Y, Leung C M, Kuang W and Ho S L 2013 J. Appl. Phys. 113 17C733
|
[4] |
Zhang J T, Li P, Wen Y M, He W, Yang A C, Lu C J, Qiu J, Wen J, Yang J, Zhu Y and Yu M 2012 Rev. Sci. Instrum. 83 115001
|
[5] |
Dai X Z, Wen Y M, Li P, Yang J and Li M 2011 Sens. Actuat. A 166 94
|
[6] |
Jia Y M, Or S W, Chan H L W, Jiao J, Luo H S and van der Zwaag S 2009 Appl. Phys. Lett. 94 263504
|
[7] |
Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
|
[8] |
Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q and Zhang H W 2013 Chin. Phys. B 22 077504
|
[9] |
Bi K, Wu W and Wang Y G 2011 Chin. Phys. B 20 067503
|
[10] |
Chen L, Li P, Wen Y M and Wang D 2011 Acta Phys. Sin. 60 067501 (in Chinese)
|
[11] |
Ma J, Hu J M, Li Z and Nan C W 2011 Adv. Mater. 23 1062
|
[12] |
Li P, Wen Y M and Bian L X 2007 Appl. Phys. Lett. 90 022503
|
[13] |
Lu C J, Li P, Wen Y M, Yang A C, He W and Zhang J T 2013 Appl. Phys. Lett. 102 132410
|
[14] |
Mandal S K, Sreenivasulu G, Petrov V M and Srinivasan G 2010 Appl. Phys. Lett. 96 192502
|
[15] |
Zhou Y, Yang S C, Apo D J, Maurya D and Priya S 2012 Appl. Phys. Lett. 101 232905
|
[16] |
Lage E, Kirchhof C, Hrkac V, Kienle L, Jahns R, Knöche R, Quandt E and Meyners D 2012 Nat. Mater. 11 523
|
[17] |
Yang S C, Park C S, Cho K H and Priya S 2010 J. Appl. Phys. 108 093706
|
[18] |
Park C S, Cho K H, Arat M A, Evey J and Priya S 2010 J. Appl. Phys. 107 094109
|
[19] |
Chen L, Li P, Wen Y M and Wang P 2012 J. Appl. Phys. 112 024504
|
[20] |
Lu C J, Li P, Wen Y M, Yang A C, He W, Zhang J T, Yang J, Wen J, Zhu Y and Yu M 2013 Appl. Phys. A 113 413
|
[21] |
Lu C J, Li P, Wen Y M, Yang A C, Yang C, Wang D C, He W and Zhang J T 2014 J. Alloy. Compd. 589 498
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|