Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 067104    DOI: 10.1088/1674-1056/22/6/067104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of drain bias on the electron mobility in the AlGaN/AlN/GaN heterostructure field-effect transistors

Lü Yuan-Jie (吕元杰)a b, Feng Zhi-Hong (冯志红)a, Cai Shu-Jun (蔡树军)a, Dun Shao-Bo (敦少博)a, Liu Bo (刘波)a, Yin Jia-Yun (尹甲运)a, Zhang Xiong-Wen (张雄文)a, Fang Yu-Long (房玉龙)a, Lin Zhao-Jun (林兆军)b, Meng Ling-Guo (孟令国)b, Luan Chong-Biao (栾崇彪)b
a Science and Technology on Application Specific Integrated Circuit Laboratory, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;
b School of Physics, Shandong University, Jinan 250100, China
Abstract  Using measured capacitance-voltage curves and current-voltage characteristics for the AlGaN/AlN/GaN heterostructure field-effect transistors with different gate lengths and drain-to-source distances, the influence of drain bias on the electron mobility is investigated. It is found that below the knee voltage the longitudinal optical (LO) phonon scattering and interface roughness scattering are dominant for the sample with a large ratio of gate length to drain-to-source distance (here 4/5), and the polarization Coulomb field scattering is dominant for the sample with a small ratio (here 1/5). However, the above polarization Coulomb field scattering is weakened in the sample with a small drain-to-source distance (here 20 μm) compared with the one with a large distance (here 100 μm). This is due to the induced strain in the AlGaN layer caused by the drain bias.
Keywords:  AlGaN/GaN heterostructures      electron mobility      drain bias      electron scattering  
Received:  31 July 2012      Revised:  08 November 2012      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  77.22.Ch (Permittivity (dielectric function))  
  77.22.Ej (Polarization and depolarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174182 and 10774090).
Corresponding Authors:  Feng Zhi-Hong     E-mail:  blueledviet@yahoo.com.cn

Cite this article: 

Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Cai Shu-Jun (蔡树军), Dun Shao-Bo (敦少博), Liu Bo (刘波), Yin Jia-Yun (尹甲运), Zhang Xiong-Wen (张雄文), Fang Yu-Long (房玉龙), Lin Zhao-Jun (林兆军), Meng Ling-Guo (孟令国), Luan Chong-Biao (栾崇彪) Influence of drain bias on the electron mobility in the AlGaN/AlN/GaN heterostructure field-effect transistors 2013 Chin. Phys. B 22 067104

[1] Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N, Darakchieva V, Monemar B, Lorenz M and Ramm G 2008 J. Appl. Phys. 103 093714
[2] Mizutani T, Ito M, Kishimoto S and Nakamura F 2007 IEEE Electron Dev. Lett. 28 549
[3] Ji D, Liu B, Lu Y W, Zou M and Fan B L 2012 Chin. Phys. B 21 067201
[4] Ma X H, Ma J G, Yang L Y, He Q, Jiao Y, Ma P and Hao Y 2011 Chin. Phys. B 20 067304
[5] Shen L, Heikman S, Moran B, Coffie R, Zhang N Q, Buttari D, Smorchkova I P, Keller S, DenBaars S P and Mishra U K 2001 IEEE Electron Dev. Lett. 22 457
[6] Lee J S, Kim J W, Lee J H, Kim C S, Oh J E, Shin M W and Lee J H 2003 Electron. Lett. 39 750
[7] Lü Y J, Lin Z J, Zhang Y, Meng L M, Luan C B, Cao Z F, Chen H and Wang Z G 2011 Appl. Phys. Lett. 98 123512
[8] Lü Y J, Lin Z J, Meng L M, Luan C B, Cao Z F, Yu Y X, Feng Z H and Wang Z G 2012 Nanoscale Research Letters Accepted to be published
[9] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T and Kuzuhara M 2003 IEEE Electron Dev. Lett. 24 289
[10] Zhao J Z, Lin Z J, Corrigan T D, Wang Z, You Z D and Wang Z G 2007 Appl. Phys. Lett. 91 173507
[11] Simin G, Koudymov A, Tarakji A, Hu X, Yang J, Khan M A, Shur M S and Gaska R 2001 Appl. Phys. Lett. 79 2651
[12] Ridley B K, Foutz B E and Eastman L F 2000 Phys. Rev. B 61 16862
[13] Lin Z J, Zhao J Z, Corrigan T D, Wang Z, You Z D, Wang Z G and Lu W 2008 J. Appl. Phys. 103 044503
[14] Liu Z Y, Zhang J C, Duan H T, Xue J S, Lin Z Y, Ma J C, Xue X Y and Hao Y 2011 Chin. Phys. B 20 097701
[15] Bykhovski A, Gelmont B and Shur M 1993 J. Appl. Phys. 74 6734
[1] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[2] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[3] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[4] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[5] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[6] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[7] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[8] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[9] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[10] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[11] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[12] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[13] Relativistic electron scattering from freely movable proton/μ+ in the presence of strong laser field
Ningyue Wang(王宁月), Liguang Jiao(焦利光), Aihua Liu(刘爱华). Chin. Phys. B, 2019, 28(9): 093402.
[14] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[15] Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Shizheng Yang(杨施政), Xiaoran Cui(崔晓然), Zhichuan Niu(牛智川), Yimen Zhang(张义门), Yuming Zhang(张玉明). Chin. Phys. B, 2019, 28(2): 028101.
No Suggested Reading articles found!