Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060202    DOI: 10.1088/1674-1056/22/6/060202
GENERAL Prev   Next  

The nonrelativistic oscillator strength of a hyperbolic-type potential

H. Hassanabadia, S. Zarrinkamarb, B. H. Yazarlooa
a Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran;
b Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran
Abstract  We consider the D-dimensional Schrödinger equation under the hyperbolic potential V0 (1-coth (αr)) +V1 (1-coth (αr))2. Using a Pekeris-type approximation, the approximate analytical solutions of the problem are obtained via the supersymmetric quantum mechanics. The behaviors of energy eigenvalues versus dimension are discussed for various quantum numbers. Useful expectation values as well as the oscillator strength are obtained.
Keywords:  Schrödinger equation      D-dimensional space      hyperbolic potential      supersymmetry quantum mechanics      oscillator strength  
Received:  09 September 2012      Revised:  14 November 2012      Accepted manuscript online: 
PACS:  02.30.Gp (Special functions)  
  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  34.20.Cf (Interatomic potentials and forces)  
Corresponding Authors:  B. H. Yazarloo     E-mail:  hoda.yazarloo@gmail.com

Cite this article: 

H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo The nonrelativistic oscillator strength of a hyperbolic-type potential 2013 Chin. Phys. B 22 060202

[1] Dong S H 2002 Phys. Scr. 65 289
[2] Qiang W C and Dong S H 2005 Phys. Scr. 72 127
[3] Dong S H and Ma Z Q 2002 Phys. Rev. A 65 042717
[4] Qiang W C and Dong S H 2008 Phys. Lett. A 372 4789
[5] Gu X Y and Dong S H 2011 J. Math. Chem. 49 2053
[6] Hassanabadi H, Yazarloo B H, Zarrinkamar S and Rahimov H 2012 Commun. Theor. Phys. 57 339
[7] Dong S H, Lozada-Cassou M, Yu J, Jimenez-Angeles F and Rivera A L 2007 Int. J. Quantum Chem. 107 366
[8] Dong S H, Chen C Y and Cassou M L 2005 J. Phys. B 38 2211
[9] Dong S H, Sun G H and Cassou M L 2005 Int. J. Quantum Chem. 102 147
[10] Chen G 2004 Phys. Scr. 69 257
[11] Wei G F, Sun G H and Dong S H 2012 Appl. Math. Comput. 218 11171
[12] Dong S H and Cassou M L 2004 Int. J. Mod. Phys. E 13 917
[13] Wei G F and Dong S H 2011 Can. J. Phys. 89 1225
[14] Dong S H and Gonzalez-Cisneros A 2008 Ann. Phys. 323 1136
[15] Ma Z Q, Dong S H, Gu X Y and Lozada-Cassou M 2004 Int. J. Mod. Phys. E 13 597
[16] Dong S H, Sun G H and Popov D 2003 J. Math. Phys. 44 4467
[17] Gu X Y, Ma Z Q and Dong S H 2003 Phys. Rev. A 67 062715
[18] Yu J, Dong S H and Sun G H 2004 Phys. Lett. A 322 290
[19] Hassanabadi S, Rajabi A A, Yazarloo B H, Zarrinkamar S and Hassanabadi H 2012 Advances in High Energy Physics, Volume 2012, Article ID 804652
[20] Hassanabadi H, Rahimov H and Zarrinkamar S 2012 Advances in High Energy Physics Volume 2011, Article ID 458087
[21] Walz M, Neu R, Staudt G, Oberhummer H and Cech H 1988 J. Phys. G: Nucl. Part. Phys. 14 L91
[22] Garcia F, Garrote E, Yoneama M L, Arruda-Neto J D T, Mesa J, Bringas F, Bringas J F, Likhachev V P, Rodriguez O and Guzman F 1999 Eur. Phys. J. A 6 49
[23] Bespalova O V, Romanovsky E A and Spasskaya T I 2003 J. Phys. G: Nucl. Part. Phys. 29 1193
[24] Dasgupta M, Hinde D J, Newton J O and Haginon K 2004 Prog. Theor. Phys. Suppl. 154 209
[25] Ogloblin A A, Glukhov Yu A, Trzaska W H, Dem'yanova A S, Goncharov S A, Julin R, Klebnikov S V, Mutterer M, Rozhkov M V, Rudakov V P, Tiorin G P, Khoa Dao T and Satchler G R 2000 Phys. Rev. C 62 044601
[26] Clemenger K 1985 Phys. Rev. B 32 1359
[27] Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer-Verlag)
[28] Dong S H 2007 Factorization Method in Quantum Mechanics (Netherlands: Springer)
[29] Agboola D 2010 Chin. Phys. Lett. 27 040301
[30] Dong S H 2011 Wave Equations in Higher Dimensions (Berlin: Springer)
[31] Jia C S, Liu J Y and Wang P Q 2008 Phys. Lett. A 372 4779
[32] Hellmann G 1937 Einfhrung in die Quantenchemie (Leipzig: Deutiche)
[33] Feynman R P 1939 Phys. Rev. 56 340
[34] Agboola D 2009 Phys. Scr. 80 065304
[35] Hibbert A 1975 Rep. Prog. Phys. 38 1217
[36] Lu L L, Xie W F and Hassanabadi H 2011 J. Lumin. 131 2538
[37] Hassanabadi H, Yazarloo B H and Lu L L 2012 Chin. Phys. Lett. 29 020303
[38] Light J C, Hamiltonian I P and Lill J V 1985 J. Chem. Phys. 82 1400
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[6] Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths
Yuhao Zhu(朱宇豪), Rui Jin(金锐), Yong Wu(吴勇), and Jianguo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043103.
[7] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[8] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[9] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[10] Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well
Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto, Dong Shi-Hai. Chin. Phys. B, 2015, 24(10): 100303.
[11] The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics
S. Hassanabadi, M. Ghominejad, S. Zarrinkamar, H. Hassanabadi. Chin. Phys. B, 2013, 22(6): 060303.
[12] The nonlinear optical properties of a magneto-exciton in a strained Ga0.2In0.8As/GaAs quantum dot
N. R. Senthil Kumar, A. John Peter, Chang Kyoo Yoo. Chin. Phys. B, 2013, 22(10): 107106.
[13] The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method
He Ying (何英), Tao Qiu-Gong (陶求功), Yang Yan-Fang (杨艳芳). Chin. Phys. B, 2012, 21(10): 100303.
[14] Radiative life time of an exciton confined in a strained GaN/Ga1-xAlxN cylindrical dot: built-in electric field effects
Chang Woo Lee, A. John Peter. Chin. Phys. B, 2011, 20(7): 077104.
[15] Relativistic calculations of 3s2 1S0–3s3p 1P1 and 3s2 1S0–3s3p 3P1,2 transition probabilities in the Mg isoelectronic sequence
Cheng Cheng(程诚), Gao Xiang(高翔), Qing Bo(青波), Zhang Xiao-Le(张小乐), and Li Jia-Ming(李家明). Chin. Phys. B, 2011, 20(3): 033103.
No Suggested Reading articles found!