Please wait a minute...
Chinese Physics, 2005, Vol. 14(1): 37-41    DOI: 10.1088/1009-1963/14/1/008
GENERAL Prev   Next  

Analytical formulae and recurrence relations of bound-continuous transition matrix element for Coulomb wavefunctions

Chen Chang-Yuan (陈昌远), Sun Dong-Sheng (孙东升), Lu Fa-Lin (陆法林)
Department of Physics, Yancheng Teachers College, Yancheng 224002, China
Abstract  In this paper, the analytical formulae of bound-continuous transition matrix elements for Coulomb wavefunctions are obtained, and the recurrence relations of different power order transition matrix elements are also derived. The results may be useful in a great diversity of scattering problems for atoms or molecules.
Keywords:  Coulomb wavefunctions      bound-continuous transition matrix elements      analytical formulae      recurrence relations  
Received:  16 December 2003      Revised:  20 September 2004      Accepted manuscript online: 
PACS:  0365  
  0365N  
  3115  
Fund: Project supported by the Natural Science Foundation of the Education Bureau of Jingsu Province, China (Grant No 02KJB140007)and the Special Foundation of Yancheng Teachers College,China.

Cite this article: 

Chen Chang-Yuan (陈昌远), Sun Dong-Sheng (孙东升), Lu Fa-Lin (陆法林) Analytical formulae and recurrence relations of bound-continuous transition matrix element for Coulomb wavefunctions 2005 Chinese Physics 14 37

[1] Quantum reflection as the reflection of subwaves
Yuan Wen(袁文), Yin Cheng(殷澄), Wang Xian-Ping(王贤平), and Cao Zhuang-Qi(曹庄琪). Chin. Phys. B, 2010, 19(9): 093402.
[2] Concurrence evolution of two qubits coupled with one-mode cavity separately
Liu Wei-Ci(刘伟慈), Wang Fa-Qiang(王发强), and Liang Rui-Sheng(梁瑞生). Chin. Phys. B, 2010, 19(9): 094204.
[3] Robust generation of qutrit entanglement via adiabatic passage of dark states
Yang Zhen-Biao(杨贞标), Wu Huai-Zhi(吴怀志), and Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2010, 19(9): 094205.
[4] Entanglement transfer via the Raman atom–cavity-field interaction
Liang Mai-Lin(梁麦林) and Yuan Bing(袁兵). Chin. Phys. B, 2010, 19(9): 094206.
[5] Generation of a four-particle entangled state via cross-Kerr nonlinearity
Zhao Li-Fang(赵丽芳), Lai Bo-Hui(赖柏辉), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), Feng Xun-Li(冯勋立), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(9): 094207.
[6] Energy average formula of photon gas rederived by using the generalised Hermann–Feynman theorem
Fan Hong-Yi(范洪义) and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(9): 090301.
[7] Fusion and fission solitons for the (2+1)-dimensional generalized Breor–Kaup system
Qiang Ji-Ye(强继业), Ma Song-Hua(马松华), and Fang Jian-Ping(方建平). Chin. Phys. B, 2010, 19(9): 090305.
[8] Nonlinear two-mode squeezing obtained by analysing two-mode exponential quadrature operators in entangled state representation
Liu Tang-Kun(刘堂昆), Shan Chuan-Jia(单传家), Liu Ji-Bing(刘继兵), and Fan Hong-Yi(范洪义). Chin. Phys. B, 2010, 19(9): 090307.
[9] Continuum states of modified Morse potential
Wei Gao-Feng(卫高峰) and Chen Wen-Li(陈文利). Chin. Phys. B, 2010, 19(9): 090308.
[10] Exact solution of entanglement of the double Jaynes–Cummings model without rotating wave approximation
Ren Xue-Zao(任学藻), Jiang Dao-Lai(姜道来), Cong Hong-Lu(丛红璐), and Li Lei(黎雷). Chin. Phys. B, 2010, 19(9): 090309.
[11] Nondestructive and complete Bell-state analysis for atomic qubit systems
He Yong(何勇) and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(9): 090310.
[12] Implementation of positive-operator-value measurements for single spin qubit via Heisenberg model
Cheng Liu-Yong(程留永), Shao Xiao-Qiang(邵晓强), Zhang Shou(张寿), and Yeon Kyu-Hwang. Chin. Phys. B, 2010, 19(9): 090311.
[13] Applying invariant eigen-operator method to deriving normal coordinates of general classical Hamiltonian
Fan Hong-Yi(范洪义), Chen Jun-Hua(陈俊华), and Yuan Hong-Chun (袁洪春). Chin. Phys. B, 2010, 19(9): 090312.
[14] Teleportation and thermal entanglement in two-qubit Heisenberg XYZ spin chain with the Dzyaloshinski–Moriya interaction and the inhomogeneous magnetic field
Gao Dan(高丹), Zhao Zhen-Shuang(赵振双), Zhu Ai-Dong(朱爱东), Wang Hong-Fu(王洪福), Shao Xiao-Qiang(邵晓强), and Zhang Shou(张寿). Chin. Phys. B, 2010, 19(9): 090313.
[15] Approximate solutions of Schrödinger equation for Eckart potential with centrifugal term
F. Tacskin and G. Koccak. Chin. Phys. B, 2010, 19(9): 090314.
No Suggested Reading articles found!