Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060201    DOI: 10.1088/1674-1056/22/6/060201
GENERAL   Next  

A symmetry-preserving difference scheme for high dimensional nonlinear evolution equations

Xin Xiang-Peng (辛祥鹏), Chen Yong (陈勇), Wang Yun-Hu (王云虎)
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China
Abstract  In this paper, a procedure for constructing discrete models of the high dimensional nonlinear evolution equations is presented. In order to construct the difference model, with the aid of the potential system of the original equation and compatibility condition, the difference equations which preserve all Lie point symmetries can be obtained. As an example, invariant difference models of the (2+1)-dimensional Burgers equation are presented.
Keywords:  symmetry-preserving      potential systems      difference equation      Lie point symmetry  
Received:  16 October 2012      Revised:  15 December 2012      Accepted manuscript online: 
PACS:  02.20.-a (Group theory)  
  04.60.Nc (Lattice and discrete methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075055 and 11275072), the Innovative Research Team Program of the National Natural Science Foundation of China (Grant No. 61021004), National High Technology Research and Development Program of China (Grant No. 2011AA010101), the Leading Academic Discipline Project of Shanghai (Grant No. B412), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120076110024), and the Shanghai Knowledge Service Platform Project (Grant No. ZF1213).
Corresponding Authors:  Chen Yong     E-mail:  ychen@sei.ecnu.edu.cn

Cite this article: 

Xin Xiang-Peng (辛祥鹏), Chen Yong (陈勇), Wang Yun-Hu (王云虎) A symmetry-preserving difference scheme for high dimensional nonlinear evolution equations 2013 Chin. Phys. B 22 060201

[1] Lie S 1881 Arch. Math. 6 328
[2] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[3] Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer)
[4] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Boston, MA: Reidel)
[5] Lou S Y, Ruan H Y, Chen D F and Chen W Z 1991 J. Phys. A: Math. Gen. 24 1455
[6] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[7] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[8] Dong Z Z, Chen Y and Lang H Y 2010 Chin. Phys. B 19 090205
[9] Chen Y, Yan Z Y and Zhang H Q 2003 Phys. Lett. A 307 107
[10] Li J H and Lou S Y 2008 Chin. Phys. B 17 747
[11] Maeda S 1987 J. Inst. Math. Appl. 38 129
[12] Levi D and Winternitz P 1991 Phys. Lett. A 152 335
[13] Levi D and Winternitz P 1997 J. Phys. A: Math. Gen. 30 633
[14] Levi D, Heredero R H and Winternitz P 1999 J. Phys. A: Math. Gen. 32 2685
[15] Dorodnitsyn V 1991 J. Sov. Math. 55 1490
[16] Bakirova M I, Dorodnitsyn V and Kozlov R V 1997 J. Phys. A: Math. Gen. 30 8139
[17] Dorodnitsyn V 1994 Int. J. Mod. Phys. C 5 723
[18] Dorodnitsyn V 2001 Appl. Numer. Math. 39 307
[19] Dorodnitsyn V and Winternitz P 2000 Nonlinear Dyn. 22 49
[20] Dorodnitsyn V, Kozlov R and Winternitz P 2003 J. Nonlinear Math. Phys. 2 41
[21] Budd C J and Dorodnitsyn V 2001 J. Phys. A: Math. Gen. 34 10387
[22] Levi D and Winternitz P 1996 J. Math. Phys. 37 5551
[23] Dorodnitsyn V 1996 Symmetries and Integrability of Difference Equations (CMR Proceedings and Lecture Notes) Providence, RI: American Mathematical Society p. 103
[24] Budd C J and Collins G J 1998 Appl. Numer. Math. 26 23
[25] Budd C J, Huang W Z and Russell R D 1996 SIAM J. Sci. Comput. 17 305
[26] Budd C J, Chen S H and Russell R D 1999 J. Comput. Phys. 152 756
[27] Valiquette F and Winternitz P 2005 J. Phys. A: Math. Gen. 38 9765
[28] Hydon P 2000 Proc. R. Soc. A 456 2835
[29] Bluman G W, Cheviakov A F and Anco S C 2010 Applications of Symmetry Methods to Partial Differential Equations (New York: Springeg-Verlag)
[30] Bluman G W and Cheviakov A F 2005 J. Math. Phys. 46 123506
[31] Bartucelli M, Pantano P and Brugarino T 1983 Lett. Nuovo Cimento 37 433
[32] Zabolotskaya E A and Khoklov R V 1969 Sov. Phys. Acoust. 8 35
[33] Crighton D G 1979 Ann. Rev. Fluid Mech. 11 11
[1] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[2] Multiple Darboux-Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach
Shuai-Jun Liu(刘帅君), Xiao-Yan Tang(唐晓艳), Sen-Yue Lou(楼森岳). Chin. Phys. B, 2018, 27(6): 060201.
[3] Accurate treatments of electrostatics for computer simulations of biological systems: A brief survey of developments and existing problems
Yi Sha-Sha (衣沙沙), Pan Cong (潘聪), Hu Zhong-Han (胡中汉). Chin. Phys. B, 2015, 24(12): 120201.
[4] New homotopy analysis transform method for solving the discontinued problems arising in nanotechnology
M. M. Khader, Sunil Kumar, S. Abbasbandy. Chin. Phys. B, 2013, 22(11): 110201.
[5] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[6] Noether conserved quantities and Lie point symmetries of difference Lagrange--Maxwell equations and lattices
Fu Jing-Li(傅景礼), Nie Ning-Ming(聂宁明), Huang Jian-Fei(黄健飞) Jimenez Salvador, Tang Yi-Fa(唐贻发), Vazquez Luis, and Zhao Wei-Jia(赵维加). Chin. Phys. B, 2009, 18(7): 2634-2641.
[7] Some new solutions derived from the nonlinear (2+1)-dimensional Toda equation---an efficient method of creating solutions
Bai Cheng-Lin(白成林), Zhang Xia(张霞), and Zhang Li-Hua (张立华). Chin. Phys. B, 2009, 18(2): 475-481.
[8] Lie point symmetry algebras and finite transformation groups of the general Broer--Kaup system
Jia Man(贾曼). Chin. Phys. B, 2007, 16(6): 1534-1544.
[9] A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice
Zha Qi-Lao (扎其劳), Sirendaoreji (斯仁道尔吉). Chin. Phys. B, 2006, 15(3): 475-477.
[10] Finite symmetry transformation groups and exact solutions of Lax integrable systems
Ma Hong-Cai (马红彩), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2005, 14(8): 1495-1500.
No Suggested Reading articles found!