Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100303    DOI: 10.1088/1674-1056/24/10/100303
GENERAL Prev   Next  

Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well

Sun Guo-Huaa, Dušan Popovb, Oscar Camacho-Nietoc, Dong Shi-Haic
a Cátedra CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico D. F. 07738, Mexico;
b Politehnica University Timisoara, Department of Physical Foundations of Engineering, Bd. V. Parvan No. 2, 300223Timisoara, Romania;
c CIDETEC, Instituto Politécnico Nacional, UPALM, Mexico D. F. 07700, Mexico
Abstract  The Shannon information entropy for the Schrödinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are broken when recovered to original space x. The position Sx and momentum Sp information entropies for six low-lying states are calculated. We notice that the Sx decreases with the increasing mass barrier width a and becomes negative beyond a particular width a, while the Sp first increases with a and then decreases with it. The negative Sx exists for the probability densities that are highly localized. We find that the probability density ρ(x) for n=1, 3, 5 are greater than 1 at position x=0. Some interesting features of the information entropy densities ρs(x) and ρs(p) are demonstrated. The Bialynicki-Birula-Mycielski (BBM) inequality is also tested for these states and found to hold.
Keywords:  position-dependent mass      Shannon information entropy      hyperbolic potential      Fourier transform  
Received:  15 April 2015      Revised:  21 May 2015      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.67.-a (Quantum information)  
Corresponding Authors:  Dong Shi-Hai     E-mail:  dongsh2@yahoo.com

Cite this article: 

Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto, Dong Shi-Hai Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well 2015 Chin. Phys. B 24 100303

[1] Shannon C E 1948 Bell Syst. Tech. J. 27 623 Reprinted in Shannon C E 1993 Collected Papers (New York: IEEE Press)
[2] Yáñez R J, Van Assche W and Dehesa J S 1994 Phys. Rev. A 50 3065
[3] Van Assche W, Yáñez R J and Dehesa J S 1995 J. Math. Phys. 36 4106
[4] Aptekarev A I, Dehesa J S and Yáñez R J 1994 J. Math. Phys. 35 4423
[5] Everett H 1973 The Many World Interpretation of Quantum Mechanics (New Jersey: Princeton University Press)
[6] Hirschmann I I Jr 1957 Am. J. Math. 79 152
[7] Beckner W 1975 Ann. Math. 102 159
[8] Bialynicki-Birula I and Mycielski J 1975 Commun. Math. Phys. 44 129
[9] Orlowski A 1997 Phys. Rev. A 56 2545
[10] Atre R, Kumar A, Kumar C N and Panigrahi P 2004 Phys. Rev. A 69 052107
[11] Romera E and de los Santos F 2007 Phys. Rev. Lett. 99 263601
[12] Galindo A and Pascual P 1978 Quantum Mechanics (Berlin: Springer)
[13] Angulo J C, Antolin J, Zarzo A and Cuchi J C 1999 Eur. Phys. J. D 7 479
[14] Majernik V and OpatrnýT 1996 J. Phys. A: Math. Gen. 29 2187
[15] Dehesa J S, Martínez-Finkelshtein A and Sorokin V N 2006 Mol. Phys. 104 613
[16] Coffey M W 2007 Can. J. Phys. 85 733
[17] Aydiner E, Orta C and Sever R 2008 Int. J. Mod. Phys. B 22 231
[18] Dehesa J S, Van Assche W and Yáñez R J 1997 Methods Appl. Math. 4 91
[19] Kumar A 2005 Ind. J. Pure. Appl. Phys. 43 958
[20] Dehesa J S, Yáñez R J, Aptekarev A I and Buyarov V 1998 J. Math. Phys. 39 3050
[21] Buyarov V S, Dehesa J S and Martinez-Finkelshtein A 1999 J. Approx. Theory 99 153
[22] Buyarov V S, López-Artés P, Martínez-Finkelshtein A and Van Assche W 2000 J. Phys. A: Math. Gen. 33 6549
[23] Katriel J and Sen K D 2010 J. Comp. Appl. Math. 233 1399
[24] Patil S H and Sen K D 2007 Int. J. Quantum Chem. 107 1864
[25] Sen K D 2005 J. Chem. Phys. 123 074110
[26] Sun G H and Dong S H 2013 Phys. Scr. 87 045003
[27] Sun G H, Dong S H and Naad S 2013 Ann. Phys. (Berlin) 525 934
[28] Sun G H, Avila Aoki M and Dong S H 2013 Chin. Phys. B 22 050302
[29] Dong S, Sun G H, Dong S H and Draayer J P 2014 Phys. Lett. A 378 124
[30] Valencia-Torres R, Sun G H and Dong S H 2015 Phys. Scr. 90 035205
[31] Sun G H, Dong S H, Launey K D, Dytrich T and Draayer J P 2015 Int. J. Quantum Chem. DOI: 10.1002/qua.24928
[32] Yańez-Navarro G, Sun G H, Dytrich T, Launey K D, Dong S H and Draayer J P 2014 Ann. Phys. 348 153
[33] Yu J and Dong S H 2004 Phys. Lett. A 325 194 (references therein)
[34] Yu J, Dong S H and Sun G H 2004 Phys. Lett. A 322 290
[35] Cunha M S and Christiansen H R 2013 Commun. Theor. Phys. 60 642
[36] Panahiy H and Bakhshi Z 2010 Acta Phys. Pol. B 41 11
[37] Bagchi B, Gorain P, Quesne C and Roychoudhury R 2004 Mod. Phys. Lett. A 19 2765
[38] Levinson N K 1949 Dan. Vidensk. Selsk. Mat. Fys. Medd. 25 9
[39] Dong S H, Hou X W and Ma Z Q 1998 Phys. Rev. A 58 2790
[40] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series, and Products (5th edn.) (New York: Academic Press)
[41] Catalán R G, Garay J and López-Ruiz R 2002 Phys. Rev. E 66 011102
[42] López-Ruiz R, Mancini H L and Calbet X 1995 Phys. Lett. A 209 321
[1] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[2] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[3] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[4] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
[5] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[6] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[7] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[8] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[9] On superintegrable systems with a position-dependent mass in polar-like coordinates
Hai Zhang(章海)†. Chin. Phys. B, 2020, 29(10): 100201.
[10] Realization of t-bit semiclassical quantum Fourier transform on IBM's quantum cloud computer
Xiang-Qun Fu(付向群), Wan-Su Bao(鲍皖苏), He-Liang Huang(黄合良), Tan Li(李坦), Jian-Hong Shi(史建红), Xiang Wang(汪翔), Shuo Zhang(张硕), Feng-Guang Li(李风光). Chin. Phys. B, 2019, 28(2): 020302.
[11] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[12] Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields
M Eshghi, H Mehraban, S M Ikhdair. Chin. Phys. B, 2017, 26(6): 060302.
[13] Realization of quantum permutation algorithm in high dimensional Hilbert space
Dong-Xu Chen(陈东旭), Rui-Feng Liu(刘瑞丰), Pei Zhang(张沛), Yun-Long Wang(王云龙), Hong-Rong Li(李宏荣), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2017, 26(6): 060305.
[14] Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization
Zhao Jin(金朝), Han-Ming Zhang(张瀚铭), Bin Yan(闫镔), Lei Li(李磊), Lin-Yuan Wang(王林元), Ai-Long Cai(蔡爱龙). Chin. Phys. B, 2016, 25(3): 038701.
[15] The bound state solution for the Morse potential with a localized mass profile
S Miraboutalebi. Chin. Phys. B, 2016, 25(10): 100301.
No Suggested Reading articles found!