Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well
Sun Guo-Huaa, Dušan Popovb, Oscar Camacho-Nietoc, Dong Shi-Haic
a Cátedra CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico D. F. 07738, Mexico; b Politehnica University Timisoara, Department of Physical Foundations of Engineering, Bd. V. Parvan No. 2, 300223Timisoara, Romania; c CIDETEC, Instituto Politécnico Nacional, UPALM, Mexico D. F. 07700, Mexico
Abstract The Shannon information entropy for the Schrödinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are broken when recovered to original space x. The position Sx and momentum Sp information entropies for six low-lying states are calculated. We notice that the Sx decreases with the increasing mass barrier width a and becomes negative beyond a particular width a, while the Sp first increases with a and then decreases with it. The negative Sx exists for the probability densities that are highly localized. We find that the probability density ρ(x) for n=1, 3, 5 are greater than 1 at position x=0. Some interesting features of the information entropy densities ρs(x) and ρs(p) are demonstrated. The Bialynicki-Birula-Mycielski (BBM) inequality is also tested for these states and found to hold.
Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto, Dong Shi-Hai Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well 2015 Chin. Phys. B 24 100303
[1]
Shannon C E 1948 Bell Syst. Tech. J. 27 623 Reprinted in Shannon C E 1993 Collected Papers (New York: IEEE Press)
[2]
Yáñez R J, Van Assche W and Dehesa J S 1994 Phys. Rev. A 50 3065
[3]
Van Assche W, Yáñez R J and Dehesa J S 1995 J. Math. Phys. 36 4106
[4]
Aptekarev A I, Dehesa J S and Yáñez R J 1994 J. Math. Phys. 35 4423
[5]
Everett H 1973 The Many World Interpretation of Quantum Mechanics (New Jersey: Princeton University Press)
[6]
Hirschmann I I Jr 1957 Am. J. Math. 79 152
[7]
Beckner W 1975 Ann. Math. 102 159
[8]
Bialynicki-Birula I and Mycielski J 1975 Commun. Math. Phys. 44 129
[9]
Orlowski A 1997 Phys. Rev. A 56 2545
[10]
Atre R, Kumar A, Kumar C N and Panigrahi P 2004 Phys. Rev. A 69 052107
[11]
Romera E and de los Santos F 2007 Phys. Rev. Lett. 99 263601
[12]
Galindo A and Pascual P 1978 Quantum Mechanics (Berlin: Springer)
[13]
Angulo J C, Antolin J, Zarzo A and Cuchi J C 1999 Eur. Phys. J. D 7 479
[14]
Majernik V and OpatrnýT 1996 J. Phys. A: Math. Gen. 29 2187
[15]
Dehesa J S, Martínez-Finkelshtein A and Sorokin V N 2006 Mol. Phys. 104 613
[16]
Coffey M W 2007 Can. J. Phys. 85 733
[17]
Aydiner E, Orta C and Sever R 2008 Int. J. Mod. Phys. B 22 231
[18]
Dehesa J S, Van Assche W and Yáñez R J 1997 Methods Appl. Math. 4 91
[19]
Kumar A 2005 Ind. J. Pure. Appl. Phys. 43 958
[20]
Dehesa J S, Yáñez R J, Aptekarev A I and Buyarov V 1998 J. Math. Phys. 39 3050
[21]
Buyarov V S, Dehesa J S and Martinez-Finkelshtein A 1999 J. Approx. Theory 99 153
[22]
Buyarov V S, López-Artés P, Martínez-Finkelshtein A and Van Assche W 2000 J. Phys. A: Math. Gen. 33 6549
[23]
Katriel J and Sen K D 2010 J. Comp. Appl. Math. 233 1399
[24]
Patil S H and Sen K D 2007 Int. J. Quantum Chem. 107 1864
[25]
Sen K D 2005 J. Chem. Phys. 123 074110
[26]
Sun G H and Dong S H 2013 Phys. Scr. 87 045003
[27]
Sun G H, Dong S H and Naad S 2013 Ann. Phys. (Berlin) 525 934
[28]
Sun G H, Avila Aoki M and Dong S H 2013 Chin. Phys. B 22 050302
[29]
Dong S, Sun G H, Dong S H and Draayer J P 2014 Phys. Lett. A 378 124
[30]
Valencia-Torres R, Sun G H and Dong S H 2015 Phys. Scr. 90 035205
[31]
Sun G H, Dong S H, Launey K D, Dytrich T and Draayer J P 2015 Int. J. Quantum Chem. DOI: 10.1002/qua.24928
[32]
Yańez-Navarro G, Sun G H, Dytrich T, Launey K D, Dong S H and Draayer J P 2014 Ann. Phys. 348 153
[33]
Yu J and Dong S H 2004 Phys. Lett. A 325 194 (references therein)
[34]
Yu J, Dong S H and Sun G H 2004 Phys. Lett. A 322 290
[35]
Cunha M S and Christiansen H R 2013 Commun. Theor. Phys. 60 642
[36]
Panahiy H and Bakhshi Z 2010 Acta Phys. Pol. B 41 11
[37]
Bagchi B, Gorain P, Quesne C and Roychoudhury R 2004 Mod. Phys. Lett. A 19 2765
[38]
Levinson N K 1949 Dan. Vidensk. Selsk. Mat. Fys. Medd. 25 9
[39]
Dong S H, Hou X W and Ma Z Q 1998 Phys. Rev. A 58 2790
[40]
Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series, and Products (5th edn.) (New York: Academic Press)
[41]
Catalán R G, Garay J and López-Ruiz R 2002 Phys. Rev. E 66 011102
[42]
López-Ruiz R, Mancini H L and Calbet X 1995 Phys. Lett. A 209 321
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.