Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040506    DOI: 10.1088/1674-1056/22/4/040506
GENERAL Prev   Next  

Hash function construction using weighted complex dynamical networks

Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平)
College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then, each block is divided into components, and the nodes and weighted edges are well defined from these components and their relations. Namely, the WCDN closely related to the original message is established. Furthermore, the node dynamics of the WCDN are chosen as a chaotic map. After chaotic iterations, quantization and exclusive-or operations, the fixed-length hash value is obtained. This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN, leading to very different hash values. Analysis and simulation show that the scheme possesses good statistical properties, excellent confusion and diffusion, strong collision resistance and high efficiency.
Keywords:  hash function      weighted complex dynamical networks      chaotic map      cryptography  
Received:  11 August 2012      Revised:  19 October 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  89.75.-k (Complex systems)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103223110003), and The Ministry of Education Research in the Humanities and Social Sciences Planning Fund, China (Grant No. 12YJAZH120).
Corresponding Authors:  Song Yu-Rong     E-mail:  songyr@njupt.edu.cn

Cite this article: 

Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平) Hash function construction using weighted complex dynamical networks 2013 Chin. Phys. B 22 040506

[1] Alvarez G and Li S 2006 Int. J. Bifur. Chaos 16 2129
[2] Kocarev L and Jakimoski G 2003 IEEE Trans. Circ. Sys. I: Regular Papers 50 123
[3] Chen F, Liao X, Xiang T and Zheng H 2011 Infor. Sci. 181 5110
[4] Liao X, Chen F and Wong K W 2010 IEEE Trans. Comput. 59 1392
[5] Chen F, Wong K W, Liao X and Xiang T 2012 IEEE Trans. Infor. Theor. 58 445
[6] Li P, Li Z, Halang W A and Chen G 2006 Phys. Lett. A 349 467
[7] Wang S H and Shan P Y 2011 Chin. Phys. B 20 090504
[8] Wang Y, Wong K W and Xiao D 2011 Commun. Nonlinear Sci. Numer. Simul. 16 2810
[9] Yang H, Wong K W, Liao X, Wang Y and Yang D 2009 Chaos, Solitons and Fractals 41 2566
[10] Akhshani A, Behnia S, Akhavan A, Jafarizadeh M A, Abu Hassan H and Hassan Z 2009 Chaos, Solitons and Fractals 42 2405
[11] Akhavan A, Samsudin A and Akhshani A 2009 Chaos, Solitons and Fractals 42 1046
[12] Wang Y, Liao X, Xiao D and Wong K W 2008 Infor. Sci. 178 1391
[13] Zhang J, Wang X and Zhang W 2007 Phys. Lett. A 362 439
[14] Wang S and Hu G 2007 Chaos 17 023119
[15] Zhang H, Wang X F, Li Z H and Liu D H 2005 Acta Phys. Sin. 54 4006 (in Chinese)
[16] Yi X 2005 IEEE Trans. Circ. Sys. II 52 354
[17] Xiao D, Liao X and Deng S 2005 Chaos, Solitons and Fractals 24 65
[18] Peng F, Qiu S S and Long M 2005 Acta Phys. Sin. 54 4562 (in Chinese)
[19] Wong K W 2003 Phys. Lett. A 307 292
[20] Luo Y L and Du M H 2012 Chin. Phys. B 21 060503
[21] Zheng F, Tian X J, Li X Y and Wu B 2008 Chin. Phys. B 17 1685
[22] Li S, Chen G and Mou X 2005 Int. J. Bifur. Chaos 15 3119
[23] Wang J Z, Wang Y L and Wang M Q 2006 Acta Phys. Sin. 55 5048 (in Chinese)
[24] Barabási A L and Albert R 1999 Science 286 509
[25] Watts D J and Strogatz S H 1998 Nature 393 409
[26] Wang X F and Chen G 2003 IEEE Circ. Sys. Mag. 3 6
[27] Yang C L and Tang K S 2011 Chin. Phys. B 20 128901
[28] Yu W, Cao J, Chen G, Lu J, Han J and Wei W 2009 IEEE Trans. Sys., Man, Cyb., Part B: Cybernetics 39 230
[29] Lu J and Chen G 2005 IEEE Trans. Autom. Control 50 841
[30] Lu J, Yu X, Chen G and Cheng D 2004 IEEE Trans. Circ. Sys. I: Regular Papers 51 787
[31] Trpevski D, Tang W K S and Kocarev L 2010 Phys. Rev. E 81 056102
[32] Nekovee M, Moreno Y, Bianconi G and Marsili M 2007 Physica A: Statistical Mechanics and Its Applications 374 457
[33] Lü L, Chen D B and Zhou T 2011 New J. Phys. 13 123005
[34] Ash J, Newth D 2007 Physica A: Statistical Mechanics and Its Applications 380 673
[35] Song Y R, Jiang G P and Xu J G 2011 Acta Phys. Sin. 60 120509 (in Chinese)
[36] Song Y R and Jiang G P 2009 Acta Phys. Sin. 58 5911 (in Chinese)
[37] Latora V and Marchiori M 2001 Phys. Rev. Lett. 87 198701
[38] García P, Parravano A, Cosenza M G, Jiménez J and Marcano A 2002 Phys. Rev. E 65 045201
[39] Li X and Chen G 2003 IEEE Trans. Circ. Sys. I: Fundamental Theory and Applications 50 1381
[40] Goldberg D 1991 ACM Computing Surveys (CSUR) 23 5
[1] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[2] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[3] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[4] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[5] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[6] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[7] Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem
Zeyu Liu(刘泽宇), Tiecheng Xia(夏铁成), Jinbo Wang(王金波). Chin. Phys. B, 2018, 27(3): 030502.
[8] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[9] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[10] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[11] Inverse full state hybrid projective synchronizationfor chaotic maps with different dimensions
Adel Ouannas, Giuseppe Grassi. Chin. Phys. B, 2016, 25(9): 090503.
[12] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[13] Image encryption using random sequence generated from generalized information domain
Xia-Yan Zhang(张夏衍), Guo-Ji Zhang(张国基), Xuan Li(李璇), Ya-Zhou Ren(任亚洲), Jie-Hua Wu(伍杰华). Chin. Phys. B, 2016, 25(5): 054201.
[14] Controlled mutual quantum entity authentication using entanglement swapping
Min-Sung Kang, Chang-Ho Hong, Jino Heo, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(9): 090306.
[15] Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Liu Bin (刘斌), Gao Fei (高飞). Chin. Phys. B, 2015, 24(7): 070308.
No Suggested Reading articles found!