Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 030502    DOI: 10.1088/1674-1056/27/3/030502
GENERAL Prev   Next  

Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem

Zeyu Liu(刘泽宇)1, Tiecheng Xia(夏铁成)1, Jinbo Wang(王金波)2
1 Department of Mathematics, Shanghai University, Shanghai 200444, China;
2 Science and Technology on Communication Security Laboratory, Chengdu 610041, China
Abstract  We propose a new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM) with the discrete fractional difference. Moreover, the chaos behaviors of the proposed map are observed and the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits are derived, respectively. Finally, with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem, we apply the discrete fractional map into color image encryption. After that, the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.
Keywords:  chaos      fractional two-dimensional triangle function combination discrete chaotic map      image encryption      Menezes-Vanstone elliptic curve cryptosystem  
Received:  29 September 2017      Revised:  11 November 2017      Accepted manuscript online: 
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Df (Fractals)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61072147 and 11271008).
Corresponding Authors:  Tiecheng Xia     E-mail:  xiatc@shu.edu.cn

Cite this article: 

Zeyu Liu(刘泽宇), Tiecheng Xia(夏铁成), Jinbo Wang(王金波) Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem 2018 Chin. Phys. B 27 030502

[1] Chai X L, Gan Z H, Lu Y, Zhang M H and Chen Y R 2016 Chin. Phys. B 25 100503
[2] Chai X L, Gan Z H, Yuan K, Lu Y and Chen Y R 2017 Chin. Phys. B 26 020504
[3] Ye G D, Huang X L, Zhang L Y and Wang Z X 2017 Chin. Phys. B 26 010501
[4] Xu L, Gou X, Li Z and Li J 2017 Opt. Laser. Eng. 91 41
[5] Teng L, Wang X Y and Meng J 2017 Multimedia Tools Appl. 1
[6] Enayatifar R, Abdullah A H, Isnin I F, Altameem A and Lee M 2017 Opt. Laser. Eng. 90 146
[7] Li Y, Wang C and Chen H 2017 Opt. Laser. Eng. 90 238
[8] Ismail S M, Said L A, Rezk A A, Radwan A G, Madian A H, Abu-ElYazeed M F and Soliman A M 2017 IEEE The 6th International Conference on Modern Circuits and Systems Technologies pp.~1-4
[9] Zhao J F, Wang S Y, Zhang L T and Wang X Y 2017 J. Electr. Comput. Eng. 20178672716
[10] Li C and Chen G 2004 Physica A 341 55
[11] Wang Z, Huang X, Li Y X and Song X N 2013 Chin. Phys. B 22 010504
[12] Radwan A G, Abd-El-Hafiz S K and AbdElHaleem S H 2012 IEEE, International Conference on Engineering and Technology (ICET)
[13] Miller K S and Ross B 1988 Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and their Applications
[14] Bohner M and Peterson A 2012 Dynamic Equations on Time Scales: An Introduction with Applications (Springer)
[15] Atici F M and Eloe P W 2009 Proc. Am. Math. Soc. 137 981
[16] Atici F M and Sengul S 2010 J. Math. Anal. Appl. 369 1
[17] Holm M T 2011 Comput. Math. Appl. 62 1591
[18] Ortigueira M D, Coito F J V and Trujillo J J 2013 IFAC Proceedings Volumes 46 629
[19] Ortigueira M D 2000 IEEE, Proceedings-Vision, Image and Signal Processing 147 71
[20] Wu G C, Baleanu D and Zeng S D 2014 Phys. Lett. A 378 484
[21] Wu G C and Baleanu D 2015 Nonlinear Dyn. 80 1697
[22] Wu G C and Baleanu D 2014 Nonlinear Dyn. 75 283
[23] Koblitz N 1987 Math. Comput. 48 203
[24] Miller V S 1985 Conference on the Theory and Application of Cryptographic Techniques (Berlin, Heidelberg: Springer)
[25] Araki K, Satoh T and Miura S 1998 International Workshop on Public Key Cryptography (Berlin, Heidelberg: Springer)
[26] Ma C 2014 National Defense Industry Press
[27] Yan Z Y 2005 Phys. Lett. A 342 309
[28] Yan Z Y 2006 Chaos 16 013119
[29] Atici F M and Eloe P W 2007 Int. J. Differ. Equ. 2 165
[30] Paral P, Dasgupta T and Bhattacharya S 2014 International Conference on Communications and Signal Processing (ICCSP)
[31] Wu X, Li Y and Kurths J 2015 PloS One 10 e0119660
[32] Xu Y, Wang H, Li Y and Pei B 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3735
[33] Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506
[34] Wu G C, Baleanu D and Lin Z X 2016 J. Vib. Control 22 2092
[35] Liu Z Y and Xia T C 2017 Appl. Comput. Inf. DOI:10.1016/j.aci.2017.07.002
[36] Liu Z Y, Xia T C and Wang J B 2017 J. Vib. Control DOI:1077546317734712
[37] Elnashaie S S E H and Abashar M E 1995 Chaos Soliton. Fract. 5 797
[38] Abdeljawad T and Baleanu D 2011 J. Comput. Anal. Appl. 13 574
[39] Chen F, Luo X and Zhou Y 2011 Adv. Differ. Equ. 2011 713201
[40] Xiao Y 2006 Research on Elliptic Curve Cryptography (Wuhan: Huazhong University of Science and Technology Press) (in Chinese)
[41] Dawaheh Z E, Yaakob S N and Othman R R B 2016 J. Theor. Appl. Inf. Technol. 85 290
[42] Li P, Min L, Hu Y, Zhao G and Li X 2012 IEEE 6th International Conference on Information and Automation for Sustainability (ICIAfS)
[43] Guo F M and Tu L 2015 The Application of Chaotic Theory in Cryptography (Beijing: Beijing Institute of Technology Press) (in Chinese)
[44] Xiao D, Liao X and Wei P 2009 Chaos Soliton. Fract. 40 2191
[45] Li C, Li S, Chen G and Halang W A 2009 Image Vision Comput. 27 1035
[46] Rhouma R, Solak E and Belghith S 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 1887
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[4] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[9] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[10] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[11] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[12] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[15] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
No Suggested Reading articles found!