Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 054201    DOI: 10.1088/1674-1056/25/5/054201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Image encryption using random sequence generated from generalized information domain

Xia-Yan Zhang(张夏衍)1, Guo-Ji Zhang(张国基)2, Xuan Li(李璇)3, Ya-Zhou Ren(任亚洲)4, Jie-Hua Wu(伍杰华)1
1. School of Computer Science and Engineering, South China University of Technology, Higher Education Mega Centre, Guangzhou 510006, China;
2. School of Mathematics, South China University of Technology, Guangzhou 510641, China;
3. School of Software, Fujian Normal University, Fuzhou 350007, China;
4. School of Computer Science and Engineering, Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  A novel image encryption method based on the random sequence generated from the generalized information domain and permutation-diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.
Keywords:  image encryption      random number generator      cryptography  
Received:  12 September 2015      Revised:  18 December 2015      Accepted manuscript online: 
PACS:  42.30.Va (Image forming and processing)  
Corresponding Authors:  Guo-Ji Zhang     E-mail:  magjzh@scut.edu.cn

Cite this article: 

Xia-Yan Zhang(张夏衍), Guo-Ji Zhang(张国基), Xuan Li(李璇), Ya-Zhou Ren(任亚洲), Jie-Hua Wu(伍杰华) Image encryption using random sequence generated from generalized information domain 2016 Chin. Phys. B 25 054201

[1] Wang X and Luan D 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 3075
[2] Ping P, Xu F and Wang Z J 2014 Signal Process. 105 419
[3] Abdo A A, Lian S, Ismail I A and Diab H 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 136
[4] Wei X, Guo L, Zhang Q, Zhang J and Lian S 2012 J. Sys. Software 85 290
[5] Liu H and Wang X 2012 Appl. Soft Comput. 12 1457
[6] Huang X and Ye G 2014 Multimedia Tools Appl. 72 57
[7] Matthews R 1989 Cryptologia 13 29
[8] Xiao D, Liao X and Wei P 2009 Chaos, Solitons & Fractals 40 2191
[9] Li C, Li S, Chen G and Halang W A 2009 Image Vision Comput. 27 1035
[10] Mirzaei O, Yaghoobi M and Irani H 2012 Nonlinear Dyn. 67 557
[11] Zhu C 2012 Opt. Commun. 285 29
[12] Wang Z, Huang X, Li Y X and Song X N 2013 Chin. Phys. B 22 010504
[13] Luo Y L and Du M H 2013 Chin. Phys. B 22 80503
[14] Xiang T, Liao X, Tang G, Chen Y and Wong K W 2006 Phys. Lett. A 349 109
[15] Li C, Li S J, Alvarez G, Chen G and Lo K T 2007 Phys. Lett. A 369 23
[16] Wang Y, Liao X, Xiang T, Wong K W and Yang D 2007 Phys. Lett. A 363 277
[17] Xu S J, Chen X B, Zhang R, Yang Y X and Guo Y C 2012 Phys. Lett. A 376 1003
[18] Wang X Y and Wang Q 2014 Chin. Phys. B 23 030503
[19] Zhang L Y, Hu X B, Liu Y S, Wong K W and Gan J 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3653
[20] Chen J, Zhu Z, Fu C, Yu H and Zhang L B 2015 Commun. Nonlinear Sci. Numer. Simulat. 20 846
[21] Dong C 2014 Signal Process.: Image Commun. 29 628
[22] Shannon C E 1949 Bell System Technical J. 28 656
[23] Fridrich J 1998 Int. J. Bifurc. chaos 8 1259
[24] Solak E, Cokal C and Yildiz O T 2010 Int. J. Bifurc. chaos 20 1405
[25] Zhang G J and Liu Q 2011 Opt. Commun. 284 2775
[26] Zhang X and Zhao Z 2014 Nonlinear Dyn. 75 319
[27] Li C Q 2016 Signal Process. 118 203
[28] Wang X and He G 2011 Opt. Commun. 284 5804
[29] Zhang G J, Li X, Liu Q and Zhang X Y 2012 Acta Phys. Sin. 61 485 (in Chinese)
[30] Rukhin A, Soto J, Nechvatal J, et al. 2010 NIST Special Publication 800-22rev1a
[1] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[2] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[3] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[4] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[7] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[8] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[9] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[12] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[13] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[14] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[15] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
No Suggested Reading articles found!