Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040308    DOI: 10.1088/1674-1056/22/4/040308
GENERAL Prev   Next  

Non-Markovian dynamics of two non-coupled qubits interacting with two separate reservoirs with different spectral densities

Wang Xiao-Yun (王小云), Ding Bang-Fu (丁邦福), Zhao He-Ping (赵鹤平)
College of Physics and Mechanical & Electrical Engineering, Jishou University, Jishou 416000, China
Abstract  The dynamics of two non-coupled qubits independently interacting with their reservoirs is solved by the time convolutionless projection operator method. We study two-qubit quantum correlation dynamics for two different types of spectral densities, which are a Lorentzian distribution and an Ohmic spectral density with a Lorentzian-Drude cutoff function. For two qubits initially prepared in the initial Bell state, quantum discord can keep longer time and reach larger values in non-Markovian reservoirs for the first spectral distribution or by reducing the cutoff frequency for the second case. For the initial Bell-like state, the dynamic behaviors of quantum discord and entanglement are compared. The results show that a long time of quantum correlation can be obtained by adjusting some parameters in experiment and further confirm that the discord can capture quantum correlation in addition to entanglement.
Keywords:  Lorentzian and Ohmic spectral densities      the time convolution-less projection operator method      non-Markovian and Markovian regime      quantum discord and entanglement  
Received:  08 June 2012      Revised:  16 September 2012      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264011 and 11104113), the Natural Science Foundation of Hunan Province, China (Grant Nos. 09JJ6011 and 11JJ6007), and the Natural Science Foundation of Education Department of Hunan Province, China (Grant No. 11C1057).
Corresponding Authors:  Wang Xiao-Yun, Ding Bang-Fu     E-mail:  wxyyun@163.com; dbf1982@126.com

Cite this article: 

Wang Xiao-Yun (王小云), Ding Bang-Fu (丁邦福), Zhao He-Ping (赵鹤平) Non-Markovian dynamics of two non-coupled qubits interacting with two separate reservoirs with different spectral densities 2013 Chin. Phys. B 22 040308

[1] Nielsen M A and Chuang I I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 52-58
[2] Wu Y and Yang X 1997 Phys. Rev. Lett. 78 3086
[3] Bennett C H, Brassard G and Creoeau C 1993 Phys. Rev. Lett. 70 1895
[4] Hu Y H and Wang J Q 2012 Chin. Phys. B 21 014203
[5] Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601
[6] Sintayehu T 2012 Chin. Phys. B 21 014204
[7] Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
[8] Hao X, Pan T, Sha J Q and Zhu S Q 2011 Commun. Theor. Phys. 55 41
[9] Luo X Q, Wang D L, Zhang Z Q, Ding J W and Liu W M 2011 Phys. Rev. A 84 033803
[10] Fanchini F F, Castelano L K and Caldeira A O 2010 New J. Phys. 12 073009
[11] He J Z, He X and Zheng J 2012 Chin. Phys. B 21 050303
[12] Shu C G, Xin X, Liu Y M, Yu Z Y, Yao W J, Wang D L and Cao G 2012 Chin. Phys. B 21 044208
[13] Wang Y H, Bai B M, Li Z, Peng J Y and Xiao H L 2012 Chin. Phys. B 21 020304
[14] Xu G F and Tong D M 2011 Chin. Phys. Lett. 28 060305
[15] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[16] Dillenschneiider R and Lutz E 2009 Europhys. Lett. 88 50003
[17] Satandy M S 2009 Phys. Rev. A 80 022108
[18] Cui J and Fan H 2010 J. Phys. A: Math. Theor. 43 045305
[19] Werlang T, Sonza S, Fanchin F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[20] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[21] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[22] Bellomo B, Franco L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[23] Bruno B, Rosario L F, Sabrina M and Giuseppe C 2010 Phys. Scr. T140 014014
[24] Ding B F, Wang X Y, Liu J F, Yan L and Zhao H P 2011 Chin. Phys. Lett. 28 104216
[25] Breuer H P and Petruccione F 2002 The Theory of Open Quantum System (Oxford: Oxford University Press)
[26] Yu T and Eberly J H 2007 Quantum Inf. Comput. 7 459
[27] Ding B F, Wang X Y and Zhao H P 2011 Chin. Phys. B 20 100302
[28] Sinayskiy I, Ferraro E, Napoli A, Messina A and Petruccione F 2009 arXiv: 0906.1796v1
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[5] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[6] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[7] Effects of classical random external field on the dynamics of entanglement in a four-qubit system
Edwige Carole Fosso, Fridolin Tchangnwa Nya, Lionel Tenemeza Kenfack, and Martin Tchoffo. Chin. Phys. B, 2021, 30(11): 110310.
[8] Detection of the quantum states containingat most k-1 unentangled particles
Yan Hong(宏艳), Xianfei Qi(祁先飞), Ting Gao(高亭), and Fengli Yan(闫凤利). Chin. Phys. B, 2021, 30(10): 100306.
[9] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2021, 30(10): 100310.
[10] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[11] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[12] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[13] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[14] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[15] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
No Suggested Reading articles found!