Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040309    DOI: 10.1088/1674-1056/22/4/040309
GENERAL Prev   Next  

Generation of multiparticle three-dimensional entanglement state via adiabatic passage

Wu Xi (吴熙), Chen Zhi-Hua (陈志华), Ye Ming-Yong (叶明勇), Chen Yue-Hua (陈悦华), Lin Xiu-Min (林秀敏)
College of Physics and Energy, Fujian Normal University, Fuzhou 350007, China
Abstract  A scheme is proposed for generating multiparticle three-dimensional entangled state by appropriately adiabatic evolutions, where atoms are respectively trapped in separated cavities so that individual addressing is needless. In the ideal case, losses due to the spontaneous transition of atom and the excitation of photon are efficiently suppressed since atoms are all in ground states and the fields remain in vacuum state. Compared with the previous proposals, the present scheme reduces its required operation time via simultaneously controlling four classical fields. This advantage would become even more obvious with the number of atoms increasing. The experimental feasibility is also discussed. The successful preparation of high-dimensional multiparticle entangled state among distant atoms provides better prospects for quantum communication and distributed quantum computation.
Keywords:  multiparticle three-dimensional entanglement state      adiabatic evolutions  
Received:  08 August 2012      Revised:  07 November 2012      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275215 and 11004033), the National Fundamental Research Program of China (Grant No. 2011CBA00203), and the Natural Science Foundation of Fujian Province, China (Grant No. 2010J01002).
Corresponding Authors:  Lin Xiu-Min     E-mail:  xmlin@fjnu.edu.cn

Cite this article: 

Wu Xi (吴熙), Chen Zhi-Hua (陈志华), Ye Ming-Yong (叶明勇), Chen Yue-Hua (陈悦华), Lin Xiu-Min (林秀敏) Generation of multiparticle three-dimensional entanglement state via adiabatic passage 2013 Chin. Phys. B 22 040309

[1] Kaszlikowski D, Gnacinski P, Zukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418
[2] Kaszlikowski D, Gosal D, Ling E J, Kwek L C, Zukwski M and Oh C H 2002 Phys. Rev. A 66 032103
[3] Bourennane M, Karlsson A and Bjork G 2001 Phys. Rev. A 64 012306
[4] Bruss D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[5] Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O'Brien J L, Gilchrist A and White A G 2009 Nature Phys. 5 134
[6] Cabello A 2002 Phys. Rev. Lett. 89 100402
[7] Zheng S B 2003 Phys. Rev. A 68 035801
[8] Zou X B, Pahlke K and Mathis W 2003 Phys. Rev. A 67 044301
[9] Lü X Y, Liu J B, Ding C L and Li J H 2008 Phys. Rev. A 78 032305
[10] Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303
[11] Chen Z H and Lin X M 2011 Chin. Phys. Lett. 28 010304
[12] Yang Z B, Wu H Z and Zheng S B 2010 Chin. Phys. B 19 094205
[13] Chen L B, Ye M Y, Lin G W and Lin X M 2007 Phys. Rev. A 76 062304
[14] Zheng S B 2009 Eur. Phys. J. D 54 719
[15] Zhong Z R 2010 Opt. Commun. 283 1972
[16] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[17] Law C and Eberly J 1998 Opt. Express 2 368
[18] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[19] Trupke M, Hinds E A, Eriksson S, Curtis E A, Moktadir Z, Kukharenka E and Kraft M 2005 Appl. Phys. Lett. 87 211106
[20] Vitanov N V, Fleischhauer M, Shore B W and Bergmann K 2001 Adv. At. Mol. Opt. Phys. 46 55
[21] McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 Nature 425 268
[22] Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D and Kimble H J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S551
[23] Specht H P, Nöleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 Nature 473 190
[24] Cai M, Painter O and Vahala K J 2000 Phys. Rev. Lett. 85 74
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[5] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[6] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[7] Effects of classical random external field on the dynamics of entanglement in a four-qubit system
Edwige Carole Fosso, Fridolin Tchangnwa Nya, Lionel Tenemeza Kenfack, and Martin Tchoffo. Chin. Phys. B, 2021, 30(11): 110310.
[8] Detection of the quantum states containingat most k-1 unentangled particles
Yan Hong(宏艳), Xianfei Qi(祁先飞), Ting Gao(高亭), and Fengli Yan(闫凤利). Chin. Phys. B, 2021, 30(10): 100306.
[9] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2021, 30(10): 100310.
[10] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[11] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[12] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[13] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[14] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[15] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
No Suggested Reading articles found!