Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 038701    DOI: 10.1088/1674-1056/22/3/038701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ballistic diffusion induced by non-Gaussian noise

Qin Li (覃莉), Li Qiang (李强)
College of Science, Northwest A&F University, Yangling 712100, China
Abstract  In this letter, we have analyzed diffusive behavior of a Brownian particle subject to both internal Gaussian thermal and external non-Gaussian noise sources. We discuss two time correlation functions C(t) of the non-Gaussian stochastic process, and find that they depend on the parameter q, indicating the departure of the non-Gaussian noise from Gaussian behavior: for q≤1, C(t) is fitted very well by the first-order exponentially decaying curve and approaches zero in the long-time limit, whereas for q>1, C(t) can be approximated by a second-order exponentially decaying function and converges to a non-zero constant. Due to the properties of C(t), the particle exhibits a normal diffusion for q≤1, while for q>1 the non-Gaussian noise induces a ballistic diffusion, i.e., long-time mean square displacement of the free particle reads 〈[x(t)-〈x(t)〉]2〉∞t2.
Keywords:  non-Gaussian noise      ballistic diffusion      correlation function  
Received:  10 July 2012      Revised:  14 September 2012      Accepted manuscript online: 
PACS:  87.15.Vv (Diffusion)  
  05.40.Ca (Noise)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the Research Start-up Foundation for Young Teachers of Northwest A&F University of China (Grant No. Z111020904).
Corresponding Authors:  Qin Li     E-mail:  qinli@nwsuaf.edu.cn

Cite this article: 

Qin Li (覃莉), Li Qiang (李强) Ballistic diffusion induced by non-Gaussian noise 2013 Chin. Phys. B 22 038701

[1] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[2] Bao J D, Hänggi P and Zhuo Y Z 2005 Phys. Rev. E 72 061107
[3] Scher H, Shlesinger M F and Bendler J T 1991 Phys. Today 44 26
[4] Shlesinger M F, Zaslavsky G M and Klafter J 1993 Nature 363 31
[5] Srokowski T 2000 Phys. Rev. Lett. 85 2232
[6] Morgado R, Oliveira F A, Batrouni G G and Hansen A 2002 Phys. Rev. Lett. 89 100601
[7] Havlin S, Bunde A and Stanley H E 1986 Phys. Rev. B 34 445
[8] Castiglione P, Mazzino A, Ginanneschi P M and Vulpiani A 1999 Physica D 134 75
[9] Bao J D and Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104
[10] Bao J D 2004 Phys. Rev. E 69 016124
[11] Laurent G 2008 Ann. Probab. 36 1093
[12] Mauro B, Gianluca A and Paolo G 2010 J. Math. Phys. 51 043303
[13] Groessing G, Fussy S, Pascasio J M and Schwabl H 2012 Ann. Phys. 327 421
[14] Hasegawa H 2007 Physica A 384 241
[15] Wiesenfeld K, Pierson D, Pantazelou E, Dames Ch and Moss F 1994 Phys. Rev. Lett. 72 2125
[16] Nozaki D, Mar D J, Grigg P and Collins J J 1999 Phys. Rev. Lett. 82 2402
[17] Borland L 1998 Phys. Lett. A 245 67
[18] Fuentes M, Toral R and Wio H S 2001 Physica A 295 114
[19] Castro F, Kuperman M, Fuentes M and Wio H S 2001 Phys. Rev. E 64 051105
[20] Fuentes M A, Wio H S and Toral R 2002 Physica A 303 91
[21] Fuentes M A, Tessone C J, Wio H S and Toral R 2003 Fluct. Noise Lett. 3 L365
[22] Bouzata S and Wio H S 2005 Physica A 351 69
[23] Guo P R, Xu W and Liu D 2010 Chin. Phys. B 19 030520
[24] Kang Y M and Xu C 2011 Acta Phys. Sin. 60 108701 (in Chinese)
[25] Wu X Q and Wang B 2011 Chin. Phys. B 20 114207
[26] Jiang L L, Luo X Q, Wu D and Zhu S Q 2012 Chin. Phys. B 21 090503
[27] Jin Y F and Zhang J J 2012 Acta Phys. Sin. 61 130502 (in Chinese)
[28] Dubkov A and Spagnolo B 2005 Fluct. Noise Lett. 5 L267
[29] Borland L 1998 Phys. Rev. E 57 6634
[30] Wio H S and Toral R 2004 Physica D 193 161
[31] Zeng C H, Chen L L and Xie C W 2008 Commun. Theor. Phys. 50 1165
[32] Sen M K and Bag B C 2009 Eur. Phys. J. B 68 253
[33] Baura A, Sen M K, Goswami G and Baga B C 2011 J. Chem. Phys. 134 044126
[34] Sokolov I M 2002 Cond-mat 0207685
[1] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[2] Momentum distribution and non-local high order correlation functions of 1D strongly interacting Bose gas
EJKP Nandani, Xi-Wen Guan(管习文). Chin. Phys. B, 2018, 27(7): 070306.
[3] Ghost images reconstructed from fractional-order moments with thermal light
De-Zhong Cao(曹德忠), Qing-Chen Li(李清晨), Xu-Cai Zhuang(庄绪财), Cheng Ren(任承), Su-Heng Zhang(张素恒), Xin-Bing Song(宋新兵). Chin. Phys. B, 2018, 27(12): 123401.
[4] Dynamical correlation functions of the quadratic coupling spin-Boson model
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060502.
[5] Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060501.
[6] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[7] The spin dynamics of the random transverse Ising chain with a double-Gaussian disorder
Liu Zhong-Qiang (刘中强), Jiang Su-Rong (姜素蓉), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2014, 23(8): 087505.
[8] Thermodynamic properties of Heisenberg magnetic systems
Qin Wei (秦伟), Wang Huai-Yu (王怀玉), Long Gui-Lu (龙桂鲁). Chin. Phys. B, 2014, 23(3): 037502.
[9] Effects of non-Gaussian noise on the dynamical properties of a logistic system
Wang Can-Jun (王参军). Chin. Phys. B, 2013, 22(6): 060502.
[10] Spin-correlation function of the fully frustrated Ising model and ± J Ising spin glass on the square lattice
M Y Ali, J Poulter. Chin. Phys. B, 2013, 22(6): 067502.
[11] Dynamics of one-dimensional random quantum XY system with Dzyaloshinskii–Moriya interaction
Li Yin-Fang (李银芳), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2013, 22(3): 037502.
[12] Effects of non-Gaussian noise on a calcium oscillation system
Wang Bing (王兵), Sun Ya-Qin (孙雅琴), Tang Xu-Dong (唐旭东). Chin. Phys. B, 2013, 22(1): 010501.
[13] Stochastic properties of tumor growth with coupling between non-Gaussian and Gaussian noise terms
Jiang Li-Li (蒋莉莉), Luo Xiao-Qin (罗晓琴), Wu Dan (吴丹), Zhu Shi-Qun (朱士群). Chin. Phys. B, 2012, 21(9): 090503.
[14] A comparative study on geometries, stabilities, and electronic properties between bimetallic AgnX (X=Au, Cu; n=1-8) and pure silver clusters
Ding Li-Ping(丁利苹), Kuang Xiao-Yu(邝小渝), Shao Peng(邵鹏), Zhao Ya-Ru(赵亚儒), and Li Yan-Fang(李艳芳) . Chin. Phys. B, 2012, 21(4): 043601.
[15] Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation
Ding Bang-Fu (丁邦福), Wang Xiao-Yun (王小云), Tang Yan-Fang (唐艳芳), Mi Xian-Wu (米贤武), Zhao He-Ping (赵鹤平). Chin. Phys. B, 2011, 20(6): 060304.
No Suggested Reading articles found!