Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060502    DOI: 10.1088/1674-1056/22/6/060502
GENERAL Prev   Next  

Effects of non-Gaussian noise on the dynamical properties of a logistic system

Wang Can-Jun (王参军)
Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, China
Abstract  The dynamical properties of a tumor cell growth system described by the logistic system with coupling between non-Gaussian and Gaussian noise terms are investigated. The effects of the nonextensive index q on the stationary properties and the transient properties are discussed, respectively. The results show that the nonextensive index q can induce the tumor cell numbers decrease greatly in the case of q>1. Moreover, the switch from the steady stable state to the extinct state is speeded up as the increases of q, and the tumor cell numbers can be more obviously restrained for a large value of q. The numerical results are found to be in basic agreement with the theoretical predictions.
Keywords:  logistic growth system      non-Gaussian noise      dynamical properties  
Received:  15 September 2012      Revised:  07 December 2012      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11205006), the Science Foundation of the Education Bureau of Shaanxi Province, China (Grant No. 12JK0962), and the Science Foundation of Baoji University of Arts and Sciences of China (Grant No. ZK11053).
Corresponding Authors:  Wang Can-Jun     E-mail:  cjwangbj@126.com

Cite this article: 

Wang Can-Jun (王参军) Effects of non-Gaussian noise on the dynamical properties of a logistic system 2013 Chin. Phys. B 22 060502

[1] Wu D J, Cao L and Ke S Z 1994 Phys. Rev. E 50 2496
[2] Cao L, Wu D J and Ke S Z 1995 Phys. Rev. E 52 3228
[3] Wang C J, Chen S B and Mei D C 2006 Chin. Phys. 15 1435
[4] Mei D C, Du L C and Wang C J 2009 J. Stat. Phys. 137 625
[5] Jia Y, Yu S N and Li J R 2000 Phys. Rev. E 62 1869
[6] Jia Y, Zheng X P, Hu X M and Li J R 2001 Phys. Rev. E 63 031107
[7] Jia Y and Li J R 1997 Phys. Rev. Lett. 78 994
[8] Dubkov A A, Agudov N V and Spagnolo B 2004 Phys. Rev. E 69 061103
[9] Agudov N V and Spagnolo B 2001 Phys. Rev. E 64 035102
[10] Liu Q and Jia Y 2004 Phys. Rev. E 70 041907
[11] Wang C J 2010 Chin. Phys. B 19 030503
[12] Castro F, Sánchez A D andWio H S 1995 Phys. Rev. Lett. 75 1691
[13] Ai B Q, Chen W and Wang X J 2003 Commun. Theor. Phys. 39 765
[14] Zhang X M and Ai B Q 2010 Eur. Phys. J. B 73 433
[15] Wang C J and Mei D C 2008 Chin. Phys. B 17 479
[16] Vilar J M G and Solé R V 1998 Phys. Rev. Lett. 80 4099
[17] Yi M and Jia Y 2005 Phys. Rev. E 72 012902
[18] Yi M and Liu Q 2010 Physica A 389 3791
[19] Ai B Q, Wang X J, Liu G T and Liu L G 2003 Phys. Rev. E 67 022903
[20] Mei D C, Xie C W and Zhang L 2004 Eur. Phys. J. B 41 107
[21] Cai J C, Wang C J and Mei D C 2007 Chin. Phys. Lett. 24 1162
[22] Wang C J, Wei Q and Mei D C 2007 Mod. Phys. Lett. B 21 789
[23] Wang C J, Wei Q and Mei D C 2008 Phys. Lett. A 372 2176
[24] Wang C J, Wei Q, Zheng B B and Mei D C 2008 Acta Phys. Sin. 57 1735 (in Chinese)
[25] Wang C J, Li D and Mei D C 2009 Commun. Theor. Phys. 52 463
[26] Wang C J 2009 Phys. Scr. 80 065004
[27] Han L B, Gong X L, Cao L and Wu D J 2007 Chin. Phys. Lett. 24 632
[28] Zhong W R, Shao Y Z and He Z H 2006 Phys. Rev. E 73 060902
[29] Bose T and Trimper S 2009 Phys. Rev. E 79 051903
[30] Wiesenfeld K, Pierson D, Pantazelou E, Dames C and Moss F 1994 Phys. Rev. Lett. 72 2125
[31] Nozaki D, Mar D J, Grigg P and Collins J J 1999 Phys. Rev. Lett. 82 2402
[32] Tsallis C 1988 J. Stat. Phys. 52 479
[33] Curado E M F and Tsallis C 1991 J. Phys. A: Math. Gen. 24 L69
[34] Curado E M F and Tsallis C 1991 J. Phys. A: Math. Gen. 24 3187
[35] Curado E M F and Tsallis C 1992 J. Phys. A: Math. Gen. 25 1019
[36] Wio H S and Toral R 2004 Physica D 193 161
[37] Wu D, Luo X Q and Zhu S Q 2007 Physica A 373 203
[38] Bouzat S and Wio H S 2005 Physica A 351 69
[39] Mangioni S E and Wio H S 2008 Eur. Phys. J. B 61 67
[40] Jiang L L, Luo X Q, Wu D and Zhu S Q 2012 Chin. Phys. B 21 090503
[41] Lipowski A and Lipowska D 2000 Physica A 276 456
[42] Panetta J C 1995 Appl. Math. Lett. 8 83
[43] Fuentes M A, Wio H S and Toral R 2002 Physica A 303 91
[44] Lindenbergerg K and West B J 1986 J. Stat. Phys. 42 201
[45] Masoliver J, West B J and Lindenbergerg K 1987 Phys. Rev. A 35 3086
[1] Ab initio study of dynamical properties of U-Nb alloy melt
Yong-Peng Shi(时永鹏), Ming-Feng Liu(刘鸣凤), Yun Chen(陈云), Wen-Lin Mo(莫文林), Dian-Zhong Li(李殿中), Tao Fa(法涛), Bin Bai(白彬), Xiao-Lin Wang(汪小琳), and Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2021, 30(12): 126105.
[2] An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2AlC MAX compound
M A Ali, M T Nasir, M R Khatun, A K M A Islam, S H Naqib. Chin. Phys. B, 2016, 25(10): 103102.
[3] Ballistic diffusion induced by non-Gaussian noise
Qin Li (覃莉), Li Qiang (李强). Chin. Phys. B, 2013, 22(3): 038701.
[4] Effects of non-Gaussian noise on a calcium oscillation system
Wang Bing (王兵), Sun Ya-Qin (孙雅琴), Tang Xu-Dong (唐旭东). Chin. Phys. B, 2013, 22(1): 010501.
[5] Stochastic properties of tumor growth with coupling between non-Gaussian and Gaussian noise terms
Jiang Li-Li (蒋莉莉), Luo Xiao-Qin (罗晓琴), Wu Dan (吴丹), Zhu Shi-Qun (朱士群). Chin. Phys. B, 2012, 21(9): 090503.
[6] Lattice dynamical and thermodynamical properties of ReB2, RuB2, and OsB2 compounds in the ReB2 structure
E. Deligoz, K. Colakoglu, Y. O. Ciftci. Chin. Phys. B, 2012, 21(10): 106301.
[7] Stationary properties of a single-mode laser system with non-Gaussian and Gaussian noise
Wang Bing(王兵) and Wu Xiu-Qing(吴秀清) . Chin. Phys. B, 2011, 20(11): 114207.
[8] Dynamical analysis and circuit simulation of a new three-dimensional chaotic system
Wang Ai-Yuan (王爱元), Ling Zhi-Hao (凌志浩). Chin. Phys. B, 2010, 19(7): 070506.
[9] Upper bound for the time derivative of entropy for a stochastic dynamical system with double singularities driven by non-Gaussian noise
Guo Pei-Rong(郭培荣), Xu Wei(徐伟), and Liu Di(刘迪). Chin. Phys. B, 2010, 19(3): 030520.
[10] Molecular dynamics simulation of thermodynamical properties of copper clusters
Wu Zhi-Min(毋志民), Wang Xin-Qiang(王新强), and Yang Yuan-Yuan(杨媛媛) . Chin. Phys. B, 2007, 16(2): 405-410.
No Suggested Reading articles found!